285 research outputs found

    H2 distribution during 2-phase Molecular Cloud Formation

    Full text link
    We performed high-resolution, 3D MHD simulations and we compared to observations of translucent molecular clouds. We show that the observed populations of rotational levels of H2 can arise as a consequence of the multi-phase structure of the ISM.Comment: 2 pages, 1 figure. Due to appear in the proceedings of the 6th Zermatt ISM Symposium: "Conditions and Impact of Star Formation: From Lab to Space

    Temporal evolution of magnetic molecular shocks II. Analytics of the steady state and semi-analytical construction of intermediate ages

    Full text link
    In the first paper of this series (Paper I) we computed time dependent simulations of multifluid shocks with chemistry and a transverse magnetic field frozen in the ions, using an adaptive moving grid. In this paper, we present new analytical results on steady-state molecular shocks. Relationships between density and pressure in the neutral fluid are derived for the cold magnetic precursor, hot magnetic precursor, adiabatic shock front, and the following cooling layer. The compression ratio and temperature behind a fully dissociative adiabatic shock is also derived. To prove that these results may even hold for intermediate ages, we design a test to locally characterise the validity of the steady state equations in a time-dependent shock simulation. Applying this tool to the results of Paper I, we show that most of these shocks (all the stable ones) are indeed in a quasi-steady state at all times, i.e. : a given snapshot is composed of one or more truncated steady shock. Finally, we use this property to produce a construction method of any intermediate time of low velocity shocks (u < 20 km/s) with only a steady-state code. In particular, this method allows one to predict the occurrence of steady CJ-type shocks more accurately than previously proposed criteria.Comment: A&A in pres

    Temporal evolution of magnetic molecular shocks I. Moving grid simulations

    Full text link
    We present time-dependent 1D simulations of multifluid magnetic shocks with chemistry resolved down to the mean free path. They are obtained with an adaptive moving grid implemented with an implicit scheme. We examine a broad range of parameters relevant to conditions in dense molecular clouds, with preshock densities between 10^3 and 10^5 cm-3, velocities between 10 and 40 km/s, and three different scalings for the transverse magnetic field: B=0,0.1,1 \mu G \sqrt{n.cm3}. We first use this study to validate the results of Chi\`eze, Pineau des For\^ets & Flower (1998), in particular the long delays necessary to obtain steady C-type shocks, and we provide evolutionary time-scales for a much greater range of parameters. We also present the first time-dependent models of dissociative shocks with a magnetic precursor, including the first models of stationary CJ shocks in molecular conditions. We find that the maximum speed for steady C-type shocks is reached before the occurrence of a sonic point in the neutral fluid, unlike previously thought. As a result, the maximum speed for C-shocks is lower than previously believed. Finally, we find a large amplitude bouncing instability in J-type fronts near the H2 dissociation limit (u ~ 25-30 km/s), driven by H2 dissociation/reformation. At higher speeds, we find an oscillatory behaviour of short period and small amplitude linked to collisional ionisation of H. Both instabilities are suppressed after some time when a magnetic field is present. In a companion paper, we use the present simulations to validate a new semi-analytical construction method for young low-velocity magnetic shocks based on truncated steady-state models.Comment: A&A in pres

    Neutronization During Type Ia Supernova Simmering

    Full text link
    Prior to the incineration of a white dwarf (WD) that makes a Type Ia supernova (SN Ia), the star "simmers" for ~1000 years in a convecting, carbon burning region. We have found that weak interactions during this time increase the neutron excess by an amount that depends on the total quantity of carbon burned prior to the explosion. This contribution is in addition to the metallicity (Z) dependent neutronization through the 22Ne abundance (as studied by Timmes, Brown, & Truran). The main consequence is that we expect a floor to the level of neutronization that dominates over the metallicity contribution when Z/Z_\odot<2/3, and it can be important for even larger metallicities if substantial energy is lost to neutrinos via the convective Urca process. This would mask any correlations between SN Ia properties and galactic environments at low metallicities. In addition, we show that recent observations of the dependences of SNe Ia on galactic environments make it clear that metallicity alone cannot provide for the full observed diversity of events.Comment: Accepted for publication in The Astrophysical Journal, 5 pages, 4 figure

    A two-dimensional mixing length theory of convective transport

    Full text link
    The helioseismic observations of the internal rotation profile of the Sun raise questions about the two-dimensional (2D) nature of the transport of angular momentum in stars. Here we derive a convective prescription for axisymmetric (2D) stellar evolution models. We describe the small scale motions by a spectrum of unstable linear modes in a Boussinesq fluid. Our saturation prescription makes use of the angular dependence of the linear dispersion relation to estimate the anisotropy of convective velocities. We are then able to provide closed form expressions for the thermal and angular momentum fluxes with only one free parameter, the mixing length. We illustrate our prescription for slow rotation, to first order in the rotation rate. In this limit, the thermodynamical variables are spherically symetric, while the angular momentum depends both on radius and latitude. We obtain a closed set of equations for stellar evolution, with a self-consistent description for the transport of angular momentum in convective regions. We derive the linear coefficients which link the angular momentum flux to the rotation rate (Λ\Lambda- effect) and its gradient (α\alpha-effect). We compare our results to former relevant numerical work.Comment: MNRAS accepted, 10 pages, 1 figure, version prior to language editio

    The C-flash and the ignition conditions of type Ia supernovae

    Full text link
    Thanks to a stellar evolution code able to compute through the C-flash we link the binary population synthesis of single degenerate progenitors of type Ia supernovae (SNe Ia) to their physical condition at the time of ignition. We show that there is a large range of possible ignition densities and we detail how their probability distribution depends on the accretion properties. The low density peak of this distribution qualitatively reminds of the clustering of the luminosities of Branch-normal SNe Ia. We tighten the possible range of initial physical conditions for explosion models: they form a one-parameter family, independent of the metallicity. We discuss how these results may be modified if we were to relax our hypothesis of a permanent Hachisu wind or if we were to include electron captures.Comment: 10 pages, 14 figures, MNRAS accepte

    Dense molecular globulettes and the dust arc towards the runaway O star AE Aur (HD 34078)

    Full text link
    Some runaway stars are known to display IR arc-like structures around them, resulting from their interaction with surrounding interstellar material. The properties of these features as well as the processes involved in their formation are still poorly understood. We aim at understanding the physical mechanisms that shapes the dust arc observed near the runaway O star AEAur (HD34078). We obtained and analyzed a high spatial resolution map of the CO(1-0) emission that is centered on HD34078, and that combines data from both the IRAM interferometer and 30m single-dish antenna. The line of sight towards HD34078 intersects the outer part of one of the detected globulettes, which accounts for both the properties of diffuse UV light observed in the field and the numerous molecular absorption lines detected in HD34078's spectra, including those from highly excited H2 . Their modeled distance from the star is compatible with the fact that they lie on the 3D paraboloid which fits the arc detected in the 24 {\mu}m Spitzer image. Four other compact CO globulettes are detected in the mapped area. These globulettes have a high density and linewidth, and are strongly pressure-confined or transient. The good spatial correlation between the CO globulettes and the IR arc suggests that they result from the interaction of the radiation and wind emitted by HD 34078 with the ambient gas. However, the details of this interaction remain unclear. A wind mass loss rate significantly larger than the value inferred from UV lines is favored by the large IR arc size, but does not easily explain the low velocity of the CO globulettes. The effect of radiation pressure on dust grains also meets several issues in explaining the observations. Further observational and theoretical work is needed to fully elucidate the processes shaping the gas and dust in bow shocks around runaway O stars. (Abridged)Comment: Accepted for publication in Astronomy & Astrophysic

    Uncertainties and robustness of the ignition process in type Ia supernovae

    Full text link
    It is widely accepted that the onset of the explosive carbon burning in the core of a CO WD triggers the ignition of a SN Ia. The features of the ignition are among the few free parameters of the SN Ia explosion theory. We explore the role for the ignition process of two different issues: firstly, the ignition is studied in WD models coming from different accretion histories. Secondly, we estimate how a different reaction rate for C-burning can affect the ignition. Two-dimensional hydrodynamical simulations of temperature perturbations in the WD core ("bubbles") are performed with the FLASH code. In order to evaluate the impact of the C-burning reaction rate on the WD model, the evolution code FLASH_THE_TORTOISE from Lesaffre et al. (2006) is used. In different WD models a key role is played by the different gravitational acceleration in the progenitor's core. As a consequence, the ignition is disfavored at a large distance from the WD center in models with a larger central density, resulting from the evolution of initially more massive progenitors. Changes in the C reaction rate at T < 5e8 K slightly influence the ignition density in the WD core, while the ignition temperature is almost unaffected. Recent measurements of new resonances in the C-burning reaction rate (Spillane et al. 2007) do not affect the core conditions of the WD significantly. This simple analysis, performed on the features of the temperature perturbations in the WD core, should be extended in the framework of the state-of-the-art numerical tools for studying the turbulent convection and ignition in the WD core. Future measurements of the C-burning reactions cross section at low energy, though certainly useful, are not expected to affect dramatically our current understanding of the ignition process.Comment: 7 pages, 5 figures, A&A accepte

    Effects of turbulent diffusion on the chemistry of diffuse clouds

    Full text link
    Aims. We probe the effect of turbulent diffusion on the chemistry at the interface between a cold neutral medium (CNM) cloudlet and the warm neutral medium (WNM). Methods. We perform moving grid, multifluid, 1D, hydrodynamical simulations with chemistry including thermal and chemical diffusion. The diffusion coefficients are enhanced to account for turbulent diffusion. We post-process the steady-states of our simulations with a crude model of radiative transfer to compute line profiles. Results. Turbulent diffusion spreads out the transition region between the CNM and the WNM. We find that the CNM slightly expands and heats up: its CH and H2_2 content decreases due to the lower density. The change of physical conditions and diffusive transport increase the H+^+ content in the CNM which results in increased OH and H2_2O. Diffusion transports some CO out of the CNM. It also brings H2_2 into contact with the warm gas with enhanced production of CH+^+, H3+_3^+, OH and H2_2O at the interface. O lines are sensitive to the spread of the thermal profile in the intermediate region between the CNM and the WNM. Enhanced molecular content at the interface of the cloud broadens the molecular line profiles and helps exciting transitions of intermediate energy. The relative molecular yield are found higher for bigger clouds. Conclusions. Turbulent diffusion can be the source of additional molecular production and should be included in chemical models of the interstellar medium (ISM). It also is a good candidate for the interpretation of observational problems such as warm H2_2, CH+^+ formation and presence of H3+_3^+.Comment: 13 pages, 23 figures, A&A accepte
    corecore