In the first paper of this series (Paper I) we computed time dependent
simulations of multifluid shocks with chemistry and a transverse magnetic field
frozen in the ions, using an adaptive moving grid. In this paper, we present
new analytical results on steady-state molecular shocks. Relationships between
density and pressure in the neutral fluid are derived for the cold magnetic
precursor, hot magnetic precursor, adiabatic shock front, and the following
cooling layer. The compression ratio and temperature behind a fully
dissociative adiabatic shock is also derived. To prove that these results may
even hold for intermediate ages, we design a test to locally characterise the
validity of the steady state equations in a time-dependent shock simulation.
Applying this tool to the results of Paper I, we show that most of these shocks
(all the stable ones) are indeed in a quasi-steady state at all times, i.e. : a
given snapshot is composed of one or more truncated steady shock. Finally, we
use this property to produce a construction method of any intermediate time of
low velocity shocks (u < 20 km/s) with only a steady-state code. In particular,
this method allows one to predict the occurrence of steady CJ-type shocks more
accurately than previously proposed criteria.Comment: A&A in pres