48 research outputs found
Treatment-resistant depression increases health costs and resource utilization
Objective: Major Depressive Disorder (MDD) is a debilitating condition with a marked social impact. The impact of MDD and Treatment-Resistant Depression (TRD+) within the Brazilian health system is largely unknown. The goal of this study was to compare resource utilization and costs of care for treatment-resistant MDD relative to non-treatment-resistant depression (TRD-). Methods: We retrospectively analyzed the records of 212 patients who had been diagnosed with MDD according to the ICD-10 criteria. Specific criteria were used to identify patients with TRD+. Resource utilization was estimated, and the consumption of medication was annualized. We obtained information on medical visits, procedures, hospitalizations, emergency department visits and medication use related or not to MDD. Results: The sample consisted of 90 TRD+ and 122 TRD-patients. TRD+ patients used significantly more resources from the psychiatric service, but not from non-psychiatric clinics, compared to TRD-patients. Furthermore, TRD+ patients were significantly more likely to require hospitalizations. Overall, TRD+ patients imposed significantly higher (81.5%) annual costs compared to TRD-patients (R 3,075.34 vs. R 1,694.60). These findings demonstrate the burden of MDD, and especially of TRD+ patients, to the tertiary public health system. Our study should raise awareness of the impact of TRD+ and should be considered by policy makers when implementing public mental health initiatives
Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity
Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections
Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa
There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence
Opto-thermo-mechanical numerical simulations of 3 different concepts of infrared achromatic phase shifters
The Darwin/TPF mission aims at detecting directly extra solar planets. It is based on the nulling interferometry, concept proposed by Bracewell in 1978, and developed since 1995 in several European and American laboratories. One of the key optical devices for this technique is the achromatic phase shifter (APS). This optical component is designed to produce a π phase shift over the whole Darwin spectral range (i.e. 6-18 μm), and will be experimentally tested on the NULLTIMATE consortium nulling test bench (Labèque et al). Three different concepts of APS are being simulated: dispersive plates focus crossing and field reversal. In this paper, we show how thermal, mechanical and optical models are merged into a single robust model, allowing a global numerical simulation of the optical component performances. We show how these simulations help us to optimizing the design and present results of the numerical model
Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data
New transiting planet candidates are identified in sixteen months (May 2009 -
September 2010) of data from the Kepler spacecraft. Nearly five thousand
periodic transit-like signals are vetted against astrophysical and instrumental
false positives yielding 1,091 viable new planet candidates, bringing the total
count up to over 2,300. Improved vetting metrics are employed, contributing to
higher catalog reliability. Most notable is the noise-weighted robust averaging
of multi-quarter photo-center offsets derived from difference image analysis
which identifies likely background eclipsing binaries. Twenty-two months of
photometry are used for the purpose of characterizing each of the new
candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are
tabulated as well as the products of light curve modeling: reduced radius
(Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest
fractional increases are seen for the smallest planet candidates (197% for
candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and
those at longer orbital periods (123% for candidates outside of 50-day orbits
versus 85% for candidates inside of 50-day orbits). The gains are larger than
expected from increasing the observing window from thirteen months (Quarter 1--
Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the
benefit of continued development of pipeline analysis software. The fraction of
all host stars with multiple candidates has grown from 17% to 20%, and the
paucity of short-period giant planets in multiple systems is still evident. The
progression toward smaller planets at longer orbital periods with each new
catalog release suggests that Earth-size planets in the Habitable Zone are
forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at
http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the
NASA Exoplanet Archiv
Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater
The properties and applications of rhamnolipid surfactants produced by Pseudomonas aeruginosa L2-1 from cassava wastewater added with waste cooking oil (CWO) as low-cost substrate, were investigated and compared with the commercial rhamnolipid mixture JBR599 (Jeneil Biosurfactant Co., Saukville, USA). The rhamnolipids produced by strain L2-1 were characterized by high performance liquid chromatography-mass spectrometry. Sixteen different rhamnolipid congeners were detected, with Rha-C(10)-C(10) and Rha-Rha-C(10)-C(10) being the most abundant. The L2-1 rhamnolipids from CWO showed similar or better tensioactive properties than those from JBR599, with a minimal surface tension of 30 mN/m and a critical micelle concentration (CMC) of 30 mg/l. The L2-1 biosurfactants formed stable emulsions with several hydrocarbons and showed excellent emulsification of soybean oil (100%). These rhamnolipids removed 69% of crude oil present in contaminated sand samples at the CMC and presented antimicrobial activity against Bacillus cereus (32 mu g/ml), Micrococcus luteus (32 mu g/ml) and Staphylococcus aureus (128 mu g/ml). These results demonstrate that the rhamnolipids produced in ONO can be useful for industrial applications, such as the bioremediation of oil spills. (C) 2010 Elsevier Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP