7 research outputs found

    Uptake, accumulation and metabolization of the antidepressant fluoxetine by Mytilus galloprovincialis

    Get PDF
    Fluoxetine, a selective serotonin re-uptake inhibitor (SSRI) antidepressant, is among the most prescribed pharmaceutical active substances worldwide. This study aimed to assess its accumulation and metabolization in the mussel Mytillus galloprovincialis, considered an excellent sentinel species for traditional and emerging pollutants. Mussels were collected from Ria Formosa Lagoon, Portugal, and exposed to a nominal concentration of fluoxetine (75 ng L-1) for 15 days. Approximately 1 g of whole mussel soft tissues was extracted with acetonitrile:formic acid, loaded into an Oasis MCX cartridge, and fluoxetine analysed by liquid chromatography with tandem mass spectrometry (LC-MSn). After 3 days of exposure, fluoxetine was accumulated in 70% of the samples, with a mean of 2.53 ng g(-1) dry weight (d.w.) and norfluoxetine was only detected in one sample (10%), at 3.06 ng g(-1) d.w. After 7 days of exposure, the accumulation of fluoxetine and norfluoxetine increased up to 80 and 50% respectively, and their mean accumulated levels in mussel tissues were up to 4.43 and 2.85 ng g(-1) d.w., respectively. By the end of the exposure period (15 days), both compounds were detected in 100% of the samples (mean of 9.31 and 11.65 ng g(-1) d.w., respectively). Statistical analysis revealed significant accumulation differences between the 3rd and 15th day of exposure for fluoxetine, and between the 3rd and 7th against the 15th day of exposure for norfluoxetine. These results suggest that the fluoxetine accumulated in mussel tissues is likely to be metabolised into norfluoxetine with the increase of the time of exposure, giving evidence that at these realistic environmental concentrations, toxic effects of fluoxetine in mussel tissues may occur. (C) 2016 Elsevier Ltd. All rights reserved

    Identification of Antibiotics in Surface-Groundwater. A Tool towards the Ecopharmacovigilance Approach: A Portuguese Case-Study

    Get PDF
    Environmental monitoring, particularly of water, is crucial to screen and preselect potential hazardous substances for policy guidance and risk minimisation strategies. In Portugal, extensive data are missing. This work aimed to perform a qualitative survey of antibiotics in surface- groundwater, reflecting demographic, spatial, consumption and drug profiles during an observational period of three years. A passive sampling technique (POCIS) and high-resolution chromatographic system were used to monitor and analyse the antibiotics. The most frequently detected antibiotics were enrofloxacin/ciprofloxacin and tetracycline in surface-groundwater, while clarithromycin/erythromycin and sulfamethoxazole were identified only in surface water. The detection of enzyme inhibitors (e.g., tazobactam/cilastatin) used exclusively in hospitals and abacavir, a specific human medicine was also noteworthy. North (Guimarães, Santo Tirso and Porto) and South (Faro, Olhão and Portimão) Portugal were the regions with the most significant frequency of substances in surface water. The relatively higher detection downstream of the effluent discharge points compared with a low detection upstream could be attributed to a low efficiency in urban wastewater treatment plants and an increased agricultural pressure. This screening approach is essential to identify substances in order to perform future quantitative risk assessment and establishing water quality standards. The greatest challenge of this survey data is to promote an ecopharmacovigilance framework, implement measures to avoid misuse/overuse of antibiotics and slow down emission and antibiotic resistance

    Fluoroquinolones and Tetracycline Antibiotics in a Portuguese Aquaculture System and Aquatic Surroundings: Occurrence and Environmental Impact

    No full text
    <div><p>The growth of aquaculture over the past few years is widely recognized as one of the main sources of antibiotics, mainly fluoroquinolones (FQ) and tetracyclines (TC), in the aquatic environment, consequently, increasing the risk of the emergence of antibiotic bacterial resistance and promoting the spread of resistant genes. This study aimed to (1) develop and validate a multiresidue method for determination and quantification of ciprofloxacin (CIP), difloxacin (DIFL), enrofloxacin (ENR), norfloxacin (NOR), sarafloxacin (SARA), and oxytetracycline (OXY) in aquaculture waters and surrounding water bodies and (2) provide the first Portuguese data to utilize in assessment of risk of adverse effects. In addition, the potential environmental impact posed by these antibiotics to aquatic organisms, belonging to different trophic levels, when exposed to the studied aquaculture waters was also assessed. The analytical strategy comprised of solid-phase extraction (SPE) through Oasis HLB cartridges, and detection and quantification by liquid chromatography with tandem mass spectrometry (LC/MS<sup>n</sup>). Method detection limits (MDL) and method quantification limits (MQL) were in the range of 0.7–3 ng/L and 2.4–10 ng/L, respectively. Recoveries varied between 57.4 and 122.8%. The method was applied to 31 water samples collected from an aquaculture and surrounding water bodies located in north of Portugal. Residues of all antibiotics, except SARA and DIFL, were detected at concentrations ranging from 3 to 75.1 ng/L. Norfloxacin was the antibiotic present at highest frequency and concentration. Regarding the environmental impact assessment (EIA), a risk quotient higher than 1 was observed for NOR.</p></div
    corecore