140 research outputs found

    Type-1 Interferon Responses Underlie Tumor-Selective Replication of Oncolytic Measles Virus

    Get PDF
    The mechanism of tumor selective replication of oncolytic measles virus (MV) is poorly understood. Using a step-wise model of cellular transformation, in which oncogenic hits were additively expressed in human bone marrow-derived mesenchymal stromal cells, we show that MV-induced oncolysis increased progressively with transformation. Type-1 interferon response to MV infection was significantly reduced and delayed, in accordance with the level of transformation. Consistently, we observed delayed and reduced STAT1 phosphorylation in the fully transformed cells. Pre-treatment with IFNβ restored resistance to MV-mediated oncolysis. Gene expression profiling to identify the genetic correlates of susceptibility to MV oncolysis revealed a dampened basal level of immune-related genes in the fully transformed cells compared to their normal counterparts. Interferon-induced transmembrane protein 1 (IFITM1) was the foremost basally downregulated immune gene. Stable IFITM1 overexpression in MV-susceptible cells resulted in a 50% increase in cell viability and a significant reduction in viral replication at 24 hours post MV infection. Overall, our data indicate that the basal reduction in functions of the type 1 IFN pathway is a major contributor to the oncolytic selectivity of MV. In particular, we have identified IFITM1 as a restriction factor for oncolytic MV, acting at early stages of infection

    IKZF1 alterations are not associated with outcome in 498 adults with B-precursor ALL enrolled in the UKALL14 trial

    Get PDF
    IKZF1 deletions (ΔIKZF1) are commonly detected in B-precursor acute lymphoblastic leukemia (ALL; B-ALL) and are widely assumed to have a significant impact on outcome. We compared the ability of multiplex ligand-dependent probe amplification (MLPA) and polymerase chain reaction (PCR) to detect ΔIKZF1 and to determine the impact on event-free survival of patients with precursor B-ALL aged 23 to 65 years recruited to the completed trial UKALL14 (ISRCTN 66541317). From 655 recruits with BCR-ABL1+ and BCR-ABL1− B-ALL, all available diagnostic DNA samples (76% of the recruited population) were screened by multiplex end point PCR covering 4 deletions: dominant-negative (DN) Δ4-7 or the loss of function Δ2-7, Δ4-8, and Δ2-8 (n = 498), MLPA (n = 436), or by both (n = 420). Although patients with BCR-ABL1− ΔIKZF1 were more likely to have minimal residual disease at the end of induction, we did not find any impact of ΔIKZF1 (including subgroup analysis for DN or loss-of-function lesions) or the IKZF1plus genotype on event-free, overall survival, or relapse risk by univariable or multivariable analyses. Consistent with the technical approach, MLPA not only detected a wider range of deletions than PCR but also failed to detect some PCR-detected lesions. The main difference between our study and others reporting an association between ΔIKZF1 and outcome is the older age of participants in our population. The impact of ΔIKZF1 in ALL may be less marked in an older population of patients. Our study underscores the need for analyses in large, harmonized data sets. This trial was registered at www.clinicaltrials.gov as #NCT01085617

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer

    Get PDF
    Although prostate cancer (PrCa) is one of the most common cancers in men in Western countries, little is known about the inherited factors that influence PrCa risk. On the basis of the fact that BRIP1/FANCJ interacts with BRCA1 and functions as a regulator of DNA double-strand break repair pathways, and that germline mutations within the BRIP1/FANCJ gene predispose to breast cancer, we chose this gene as a candidate for mutation screening in familial and young-onset PrCa cases. We identified a truncating mutation, R798X, in the BRIP1/FANCJ gene in 4 out of 2714 UK PrCa cases enriched for familial (2 out of 641; 0.3%) and young-onset cases (2 out of 2073; 0.1%). On screening 2045 controls from the UK population, we found one R798X sequence alteration (0.05%; odds ratio 2.4 (95% CI 0.25–23.4)). In addition, using our data from a genome-wide association study, we analysed 25 SNPs in the genomic region of the BRIP1/FANCJ gene. Two SNPs showed evidence of association with familial and young-onset PrCa (rs6504074; Ptrend=0.04 and rs8076727; Ptrend=0.01). These results suggest that truncating mutations in BRIP1/FANCJ might confer an increased risk of PrCa and common SNPs might also contribute to the alteration of risk, but larger case–control series will be required to confirm or refute this association

    Genetic and genomic analysis of acute lymphoblastic leukaemia in older adults reveals a distinct profile of abnormalities: analysis of 210 patients from the UKALL14 and UKALL60+ clinical trials

    Get PDF
    Despite being predominantly a childhood disease, the incidence of ALL has a second peak in adults aged 60 years and over. These older adults fare extremely poorly with existing treatment strategies and very few studies have undertaken a comprehensive genetic and genomic characterisation to improve prognosis in this age group. We performed cytogenetic, single nucleotide polymorphism (SNP) array and next generation sequencing (NGS) analyses on samples from 210 patients aged ≥60 years from the UKALL14 and UKALL60+ clinical trials. BCR-ABL1 positive disease was present in 26% (55/210) of patients, followed by low hypodiploidy/near triploidy in 13% (28/210). Cytogenetically cryptic rearrangements in CRLF2, ZNF384 and MEF2D were detected in 5%, 1% and 1% of patients respectively. Copy number abnormalities were common and deletions in ALL driver genes were seen in 77% of cases. IKZF1 deletion was present in 51% (40/78) of samples tested and the IKZF1plus profile identified in over a third (28/77) of BCP-ALL cases. The genetic good risk abnormalities high hyperdiploidy (n=2), ETV6-RUNX1 (no cases) and ERG deletion (no cases) were exceptionally rare in this cohort. RAS pathway mutations were seen in 17% (4/23) of screened samples. KDM6A abnormalities, including biallelic deletions, were discovered in 5% (4/78) of SNP array and 9% (2/23) of NGS samples, and represent a novel, potentially therapeutically actionable lesions using EZH2 inhibitors. Outcome remained poor with five-year event-free (EFS) and overall survival (OS) rates of 17% and 24% respectively across the cohort indicating a need for novel therapeutic strategies

    Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21

    Get PDF
    Previous genome-wide association studies (GWAS) of prostate cancer risk focused on cases unselected for family history and have reported over 100 significant associations. The International Consortium for Prostate Cancer Genetics (ICPCG) has now performed a GWAS of 2511 (unrelated) familial prostate cancer cases and 1382 unaffected controls from 12 member sites. All samples were genotyped on the Illumina 5M+exome single nucleotide polymorphism (SNP) platform. The GWAS identified a significant evidence for association for SNPs in six regions previously associated with prostate cancer in population-based cohorts, including 3q26.2, 6q25.3, 8q24.21, 10q11.23, 11q13.3, and 17q12. Of note, SNP rs138042437 (p = 1.7e−8) at 8q24.21 achieved a large estimated effect size in this cohort (odds ratio = 13.3). 116 previously sampled affected relatives of 62 risk-allele carriers from the GWAS cohort were genotyped for this SNP, identifying 78 additional affected carriers in 62 pedigrees. A test for an excess number of affected carriers among relatives exhibited strong evidence for co-segregation of the variant with disease (p = 8.5e−11). The majority (92 %) of risk-allele carriers at rs138042437 had a consistent estimated haplotype spanning approximately 100 kb of 8q24.21 that contained the minor alleles of three rare SNPs (dosage minor allele frequencies <1.7 %), rs183373024 (PRNCR1), previously associated SNP rs188140481, and rs138042437 (CASC19). Strong evidence for co-segregation of a SNP on the haplotype further characterizes the haplotype as a prostate cancer pre-disposition locus

    Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets

    Get PDF
    Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials
    • …
    corecore