2,069 research outputs found

    Characterization of Selenium Accumulation, Localization and Speciation in Buckwheat–Implications for Biofortification

    Get PDF
    Buckwheat is an important crop species in areas of selenium (Se) deficiency. To obtain better insight into their Se metabolic properties, common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum) were supplied with different concentrations of Se, supplied as selenate, selenite, or Astragalus bisulcatus plant extract (methyl-selenocysteine). Se was supplied at different developmental stages, with different durations, and in the presence or absence of potentially competing ions, sulfate, and phosphate. The plants were analyzed for growth, Se uptake, translocation, accumulation, as well as for Se localization and chemical speciation in the seed. Plants of both buckwheat species were supplied with 20 μM of either of the three forms of Se twice over their growth period. Both species accumulated 15–40 mg Se kg−1 DW in seeds, leaves and stems, from all three selenocompounds. X-ray microprobe analysis showed that the Se in seeds was localized in the embryo, in organic C-Se-C form(s) resembling selenomethionine, methyl-selenocysteine, and γ-glutamyl-methylselenocysteine standards. In short-term (2 and 24 h) Se uptake studies, both buckwheat species showed higher Se uptake rate and shoot Se accumulation when supplied with plant extract (methyl-selenocysteine), compared to selenite or selenate. In long-term (7 days) uptake studies, both species were resistant to selenite up to 50 μM. Tartary buckwheat was also resistant to selenate up to 75 μM Se, but >30 μM selenate inhibited common buckwheat growth. Selenium accumulation was similar in both species. When selenite was supplied, Se levels were 10–20-fold higher in root (up to 900 mg Se kg−1 DW) than shoot, but 4-fold higher in shoot (up to 1,200 mg Se kg−1 DW) than root for selenate-supplied plants. Additionally, sulfate and phosphate supply affected Se uptake, and conversely selenate enhanced S and P accumulation in both species. These findings have relevance for crop Se biofortification applications

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Structure and Behavior of Human α-Thrombin upon Ligand Recognition: Thermodynamic and Molecular Dynamics Studies

    Get PDF
    Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK) exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS) measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors
    corecore