
Review Article
Acoustic Sensor Self-Localization: Models and Recent Results

Diego B. Haddad,1 Markus V. S. Lima,2 Wallace A. Martins,2 Luiz W. P. Biscainho,2

Leonardo O. Nunes,3 and Bowon Lee4

1Computer Engineering Department, Federal Center for Technological Education (CEFET/RJ), Petropolis, RJ, Brazil
2DEE-DEL/Poli & PEE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
3Advanced Technology Labs, Microsoft, Rio de Janeiro, RJ, Brazil
4Department of Electronic Engineering, Inha University, Incheon, Republic of Korea

Correspondence should be addressed to Bowon Lee; bowon.lee@inha.ac.kr

Received 19 May 2017; Revised 18 August 2017; Accepted 30 August 2017; Published 22 October 2017

Academic Editor: Nathalie Mitton

Copyright © 2017 Diego B. Haddad et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Thewide availability of mobile devices with embeddedmicrophones opens up opportunities for new applications based on acoustic
sensor localization (ASL). Among them, this paper highlights mobile device self-localization relying exclusively on acoustic signals,
but with previous knowledge of reference signals and source positions. The problem of finding the sensor position is stated
as a function of estimated times-of-flight (TOFs) or time-differences-of-flight (TDOFs) from the sound sources to the target
microphone, and the main practical issues involved in TOF estimation are discussed. Least-squares ASL solutions are introduced,
followed by other strategies inspired by sound source localization solutions: steered-response power, which improves localization
accuracy, and a new region-based search, which alleviates complexity. A set of complementary techniques for further improvement
of TOF/TDOF estimates are reviewed: sliding windows, matching pursuit, and TOF selection. The paper proceeds with proposing
a novel ASL method that combines most of the previous material, whose performance is assessed in a real-world example: in a
typical lecture room, the method achieves accuracy better than 20 cm.

1. Introduction

The increasing number of smart mobile devices (such as
laptops and smartphones) that can interact with their sur-
rounding world through their many sensors enables one to
envision several new and exciting applications. Examples of
such applications include indoor navigation [1], location-
based services [2], patient monitoring [3], and many others
involving ad hoc microphone arrays [4–11]. These applica-
tions have one thing in common: they require the estimation
of the mobile device position.

Based on the specific technology employed, it is possi-
ble to categorize methodologies for localization of mobile
devices in three distinct groups [12]: (i) systems that utilize
ancillary sensors, such as accelerometer and magnetometers;
(ii) systems that rely on the received signal strength of radio
signals; and (iii) systems that use time-of-flight (TOF) of
acoustic signals to perform localization. This paper focuses
on (iii), since acoustic sensor localization (ASL) systems

enable centimeter-scale localization and are quite inexpensive
as they only require acoustic sensors (i.e., microphones) in
the mobile devices.

ASL techniques relying on TOF information may require
or not prior knowledge of the loudspeakers’ positions.
For instance, many works have tackled the problem of
microphone array calibration [13–16] assuming that sources’
positions are known and aiming to estimate (or refine an
initial estimate of) the acoustic sensor location. In such
scenarios, synchronization problems are not amajor concern,
since all sources and sinks are usually under the control of
whoever wants to calibrate the microphone array. On the
other hand, if the sources’ positions are unknown, then a
joint source and sensor localization is commonly employed
[17, 18]. In this case, the lack of synchronism may severely
degrade the mobile position estimate. In [7], a solution that
deals explicitly with synchronization was presented. In [8], a
solution considering multiple sources and sensors per device
was described.
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When it comes to the performance of ASL techniques,
the accuracy of TOF estimates is of paramount importance.
Roughly speaking, in order to obtain an accurate TOF esti-
mate, the sensor (microphone) should be able to determine
the exact time a given acoustic signal takes to propagate
from the source. Hence, the acoustic signals employed, herein
called probe signals, should be carefully selected, taking
into consideration practical issues like noise, interference,
and mainly reverberation. Recently, several papers have
addressed the problem of designing good probe signals and
improving the TOF estimation. In [19], a probe signal design
using pulse compression technique and hyperbolic frequency
modulated signals was presented.The technique proposed in
that work is able to localize an acoustic source and estimate
its velocity and direction in case it is moving. In addition, a
matching pursuit-based algorithm for TOF estimation was
described in [20] and then refined in [12], in both papers
with promising results. In [21], an iterative peak matching
algorithm for the calibration of a wireless acoustic sensor
network was described.

The ASL methods described in this work assume that
sources’ positions and probe signals are known at the receiver
(i.e., the mobile device containing a microphone), but not
counting on synchronism between sensor and source nor
cooperation with other mobile devices: all processing must
take place on the sensor itself, allowing the sensor to self-
localize indoors. Nevertheless, a robust ASL system with
such characteristics needs to address several issues, such
as reverberation, asynchrony between acoustic source and
sensor, poor estimation of the speed of sound, and noise.
Also, the proposed solutions need to be computationally
inexpensive in order to be able to run on the mobile itself
(which in general is a battery-operated device).

1.1. Objectives. Themain objectives of this paper are
(i) to review some state-of-the-art techniques for ASL;
(ii) to describe in detail the challenges ASL algorithms

face in practical environments;
(iii) to present in a unified context some recent methods

proposed by the authors to tackle such practical
challenges;

(iv) to propose a novel ASL algorithm that combines dif-
ferent state-of-the-art techniques with a new region-
based search.

For beginners in the ASL field it can be a Herculean
task to go through the myriad of techniques addressing
ASL problems. The concise approach adopted here provides
beginners with a glimpse of the main problems and solutions
in the ASL field. Experienced researchers can also benefit
from the unified approach covering recent ideas that are
not standard in the area, as the ones described in [22–24].
In fact, many research opportunities may open up thanks
to the unified way ASL problems and related solutions are
described here. Finally, low power high-frequency probe
signals inaudible for most people are proposed, along with
a new region-based search that is shown to be robust when
combined with matching pursuit TOF-selection strategies.

1.2. Organization. This paper is organized as follows. Sec-
tion 2 provides basic definitions and formally states the
ASL problem. Classical solutions are described in Section 3,
whereas improved algorithms are described in Section 4. A
novel ASL system is proposed in Section 5, and the respective
experimental results are presented in Section 6. Concluding
remarks are drawn in Section 7.

2. Background

2.1. Acoustic Networks. An acoustic network is formed when
there exists an acoustic coupling among loudspeakers (herein
also called sources) and microphones (herein also denom-
inated as sensors). In a general configuration, an acoustic
network is comprised of 𝑆 ∈ N sources and 𝑀 ∈ N

microphones, which can be moving as long as they do not go
further enough to break the acoustic coupling. In addition,
these nodes (loudspeakers and microphones) may cooperate
somehow in order to accomplish some task, like localizing a
source or a sensor or enhancing a signal.

This paper addresses the problem of acoustic sensor
localization (ASL) without sensor cooperation. In this case,
each microphone individually uses the 𝑆 acoustic signals
emitted/acquired in order to passively estimate its own
location. Thus, without loss of generality,𝑀 = 1 is assumed.
In addition, the positions of the loudspeakers are fixed and
known.

2.2. Basic Definitions. Let m, p𝑠 ∈ R3 be the microphone
position and the position of the 𝑠th loudspeaker, respectively.
The time-of-flight (TOF), that is, the time that the acoustic
signal takes to travel from the source to the sensor through
a direct path, plays a central role in ASL. Indeed, TOF𝑡𝑠 ∈ R+ from the 𝑠th loudspeaker to the sensor is defined
as

𝑡𝑠 ≜
󵄩󵄩󵄩󵄩m − p𝑠

󵄩󵄩󵄩󵄩
V

, (1)

where V ∈ R+ denotes the speed of sound. From (1), it is
clear thatm can be found if a sufficient number of TOFs are
known. In practice, however, 𝑡𝑠 cannot be exactly determined,
but rather estimated by some procedure as 𝑡̂𝑠 ∈ R+.

Instead of using the TOF directly, there are also someASL
techniques that rely on the time-difference-of-flight (TDOF) to
estimate the sensor position.TheTDOF related to loudspeak-
ers 𝑠1, 𝑠2 ∈ S is given by

𝜏𝑠1𝑠2 ≜ 𝑡𝑠1 − 𝑡𝑠2 =
󵄩󵄩󵄩󵄩󵄩m − p𝑠1

󵄩󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩󵄩m − p𝑠2
󵄩󵄩󵄩󵄩󵄩

V
, (2)

which must also be estimated as 𝜏𝑠1𝑠2 ≜ 𝑡̂𝑠1 − 𝑡̂𝑠2 .
2.3. TOF Estimation. One of the simplest procedures to
obtain a TOF estimate 𝑡̂𝑠 is to compute the cross-correlation
function (CCF) 𝑅𝑠[⋅] : N → R between the signal 𝑦[𝑛]
acquired by the microphone and the signal 𝑥𝑠[𝑛] emitted by
the 𝑠th loudspeaker, given by

𝑅𝑠 [𝑘] ≜ ∑
𝑛∈N

𝑦 [𝑛] 𝑥𝑠 [𝑛 − 𝑘] , (3)
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where it is assumed that 𝑥𝑠[𝑛] is known at the microphone
node, and then find the delay associatedwith the highest peak
of 𝑅𝑠[𝑘].

In order to fully understand the above procedure, con-
sider an ideal setup in which there exists line-of-sight (LOS),
that is, a direct path connecting loudspeaker and micro-
phone, and the propagation medium does not introduce any
distortion to the emitted signal. In this scenario, the received
signal is a delayed version of the emitted signal, that is, 𝑦[𝑛] =𝑥𝑠[𝑛−𝑘0], where 𝑘0 stands for the delaymeasured in samples.
Thus, it is clear that the maximum of (3) is achieved when𝑘 = 𝑘0, which is then converted from samples to seconds,
as shown in (6), yielding the TOF estimate. In this ideal
setup, the accuracy of 𝑡̂𝑠 is limited only by the sampling rate.
However, in practical cases, there are many issues that may
deteriorate the TOF estimates and, consequently, impair the
accuracy of ASL techniques.

The CCF essentially measures the similarity between
signals 𝑦[𝑛] and 𝑥𝑠[𝑛−𝑘] for different values of 𝑘. In practice,
however, the generalized cross-correlation (GCC) function
[25], a filtered version of the CCF, is usually preferred. By
denoting as 𝑋(e𝑗𝜔) the discrete-time Fourier transform of a
generic signal 𝑥[𝑛], the GCC function 𝑅GCC

𝑠 [⋅] : N→ R is

𝑅GCC
𝑠 [𝑘] ≜ 12𝜋 ∫

𝜋

−𝜋
Ψ𝑠 (e𝑗𝜔)𝑋∗𝑠 (e𝑗𝜔) 𝑌 (e𝑗𝜔) e𝑗𝜔𝑘d𝜔, (4)

whereΨ𝑠(e𝑗𝜔) is the frequency response of the filter employed
to extract specific pieces of information from the CCF [26].
There are many different choices for this filter [26, 27], but
the majority of applications involving localization through
acoustic signals use the phase transform (PHAT) filter

ΨPHAT
𝑠 (e𝑗𝜔) ≜ 1󵄨󵄨󵄨󵄨𝑋∗𝑠 (e𝑗𝜔) 𝑌 (e𝑗𝜔)󵄨󵄨󵄨󵄨 . (5)

Note that, in the ideal setup with 𝑦[𝑛] = 𝑥𝑠[𝑛 − 𝑘0],𝑅GCC-PHAT
𝑠 [𝑘] = 𝛿[𝑘 − 𝑘0], featuring only one peak that can

be unambiguously associated with the TOF. This indicates
that GCC-PHAT may facilitate the TOF-estimation task by
eliminating spurious peaks that may appear in the standard
CCF due to the emitted signals’ self-similarities. This indeed
occurs for wideband signals, but when narrowband signals
are employed the division in (5) may not be well defined for
all frequencies or may actually induce noise enhancement.

Practical scenarios usually face moderate to severe rever-
beration, which essentially means that the received signal𝑦[𝑛] can be represented as the sum of delayed and attenuated
versions of the signal emitted by the loudspeaker 𝑥𝑠[𝑛]. Since
the phase of a signal conveys the information related to delays
and also because reverberation distorts the magnitude of the
signal, the PHAT filter discards the magnitude response of
the cross-spectrum density (Fourier transform of the CCF)
and focuses solely on its phase response, which makes the
GCC-PHAT more robust against reverberation, considering
wideband signals [27].

The TOF estimate can eventually be computed as

𝑡̂𝑠 ≜ 1𝐹 (argmax
𝑘∈N

{𝑅GCC
𝑠 [𝑘]}) , (6)

where 𝐹 ∈ R+ is the sampling frequency.

One can employ TOF- or TDOF-based ASL techniques
depending on the kind of errors present in each 𝑡̂𝑠. Indeed,
for each estimate 𝑡̂𝑠 there are random and systematic errors
associated with it. If systematic errors are dominant, then it is
better to rely on TDOF estimates, as similar systematic errors
are canceled by the subtraction of the TOF estimates. On the
other hand, if random errors are dominant, then it is better
to directly use the TOF estimates, because TDOF estimates
may amplify random errors. In the next subsection, practical
issues that lead to some kinds of errors in 𝑡̂𝑠 are described.
2.4. Common Practical Issues. The accuracy of ASL tech-
niques depends on how close the estimates 𝑡̂𝑠 are from the
actual TOFs 𝑡𝑠. A problem might occur if the direct path
connecting source and sensor does not exist or is temporarily
obstructed, that is, if there is no LOS; in this case, 𝑡̂𝑠 in (6)
may be the propagation time corresponding to some other
path related to reflection. Similarly, the directionality of the
loudspeakers is also important, as it is related to the coverage
area of ASL systems. Both LOS and directionality issues
should be taken into account when designing ASL systems,
that is, when choosing and positioning the loudspeakers.

There are also some practical issues, like reverberation and
interference, that corrupt the received signal 𝑦[𝑛]. When such
issues are present, the CCF function may have other peaks;
as a consequence, the peak corresponding to the direct path
(i.e., to the TOF) becomes less prominent, sometimes even
smaller than surrounding peaks. Therefore, this kind of issue
impairs the received signal and thus the CCF and can be
circumvented by choosing an adequate acoustic signal 𝑥𝑠[𝑛]
(herein also called probe signal) with desirable correlation
properties and by exploiting the physics of the problem, as
will be explained in Section 4.

In general, if source and/or sensor are moving, then the
Doppler effect arises and may further corrupt the estimation
of 𝑡𝑠. Nevertheless, in many ASL applications, the relative
velocity between source and sensor is usually much smaller
than the speed of sound V, which makes Doppler effect
negligible.

The remainder of this section is devoted to some issues
involving time measurements, namely, asynchrony and fre-
quency mismatch between loudspeakers and microphones.
When there is asynchrony between microphone and loud-
speaker, the argument thatmaximizes𝑅GCC

𝑠 [𝑘] can bewritten
as 𝑘𝑜𝑠 + Δ𝑘𝑠 ∈ N, where 𝑘𝑜𝑠 is the actual discrete-time TOF
and Δ𝑘𝑠 is the discrete-time bias summarizing all time-lag
impairments. In addition, if there is frequency mismatch,
then the sensor’s clock frequency can be written as 𝐹 + Δ𝐹 ∈
R+, where𝐹 is the source’s clock frequency. Considering these
two deviations, the TOF estimate obtained in (6) is related to
the actual discrete-time TOF 𝑘𝑜𝑠 by

𝑡̂𝑠 = 𝑘
𝑜
𝑠 + Δ𝑘𝑠𝐹 + Δ𝐹 = 𝑘𝑜𝑠 + Δ𝑘𝑠𝐹 ( 11 + Δ𝐹/𝐹) . (7)

By assuming that |Δ𝐹| ≪ 𝐹, this expression can be
simplified as

𝑡̂𝑠 ≈ 𝑘
𝑜
𝑠 + Δ𝑘𝑠𝐹 (1 − Δ𝐹𝐹 ) ≈ 𝛼𝑡𝑠 + 𝛽𝑠, (8)
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where 𝛼 ≜ (𝐹 − Δ𝐹)/𝐹, 𝑡𝑠 ≈ 𝑘𝑜𝑠/𝐹, and 𝛽𝑠 ≜ Δ𝑘𝑠(𝐹 − Δ𝐹)/𝐹2.
Observe that if the discrete-time biases Δ𝑘𝑠, with 𝑠 ∈ S, are
due to asynchrony and some constant playback-system delay
only, that is, no acoustic impairment or LOS obstruction is
present, then Δ𝑘𝑠 = Δ𝑘 for all 𝑠 ∈ S, implying that 𝛽𝑠 = 𝛽 for
all 𝑠 ∈ S. Hence,

󵄩󵄩󵄩󵄩m − p𝑠
󵄩󵄩󵄩󵄩 = V𝑡𝑠 ≈ ( V𝛼) 𝑡̂𝑠 + (−

V𝛽
𝛼 ) = 𝑎𝑡̂𝑠 + 𝑏, (9)

in which the speed of sound V is embedded into the unknown
parameters 𝑎 and 𝑏. In any context in which clock skew can be
neglected (i.e., 𝛼 = 1), 𝑎 actually models the speed of sound
and 𝑏models a constant range-bias.

Once the main definitions and common practical issues
have been described, one now has all basic tools to address
the sensor localization problem itself.

3. ASL Algorithms

As mentioned in Section 1, there are many different solutions
to the problem of localizing an acoustic sensor. This section
describes three state-of-the-art families of algorithms that
span the main ASL approaches. Section 3.1 details TOF- and
TDOF-based least-squares (LS) solutions [23] built on the
affine model in (9). Section 3.2 indicates how the steered-
response power (SRP) technique, originally targeted to the
problem of sound source localization (SSL) using micro-
phone array [27], can be adapted to work in the ASL context.
Section 3.3 describes a new localization approach that relies
on searching for regions (cuboids) that are likely to contain
the sensor.

3.1. Least-Squares. In the LS procedure, many TOF or TDOF
measurements are collected and used to estimate the micro-
phone position. In what follows, the TOF-based LS method
known as T𝑎𝑏 and the TDOF-based LSmethod known as D𝑎
proposed in [22, 23] are described.

3.1.1. TOF-Based Problem (𝑇𝑎𝑏). Motivated by the relation in
(9), let the error 𝑒𝑠 corresponding to the 𝑠th loudspeaker be
defined as 𝑒𝑠 ≜ (𝑎𝑡̂𝑠 + 𝑏)2 − ‖m − p𝑠‖2, for all 𝑠 ∈ S, where
the unknowns are m, 𝑎, 𝑏. Define the error vector e(T𝑎𝑏) ≜[𝑒1 𝑒2 ⋅ ⋅ ⋅ 𝑒𝑆]𝑇, in which the subscript T𝑎𝑏 stands for TOF-
based solutions with unknown parameters 𝑎, 𝑏, besides m
itself. Then, the T𝑎𝑏 problem is formulated as

min
m,𝑎,𝑏

󵄩󵄩󵄩󵄩e(T𝑎𝑏)󵄩󵄩󵄩󵄩2 , (10)

which is nonlinear and has no closed-form solution.

3.1.2. TDOF-Based Problem (𝐷𝑎). Without loss of generality,
assume that 𝑠 = 1 corresponds to the reference loudspeaker,
whose associated TOF and position are 𝑡̂1 and p1 = 0,
respectively. In order to work with TDOFs, one can simply
apply the following relation to (9): 𝑎𝑡̂𝑠 + 𝑏 = (𝑎𝑡̂𝑠 − 𝑎𝑡̂1) +(𝑎𝑡̂1 + 𝑏) ≈ 𝑎𝜏𝑠1 + ‖m‖, where 𝜏𝑠1 is the TDOF related to the𝑠th and the reference loudspeakers. In this way, by defining𝑒𝑠 ≜ (𝑎𝜏𝑠1 + ‖m‖)2 − ‖m − p𝑠‖2, 𝑠 ∈ S \ {1}, and forming

the error vector e(D𝑎) ≜ [𝑒2 ⋅ ⋅ ⋅ 𝑒𝑆]𝑇, the D𝑎 problem can be
written as

min
m,a

󵄩󵄩󵄩󵄩e(D𝑎)󵄩󵄩󵄩󵄩2 , (11)

which is also nonlinear. Observe that, by working with
TDOFs, the D𝑎 approach eliminates the systematic error 𝑏,
as stated in Section 2.2. The acronym D𝑎 points out that this
solution uses TDOFs and estimates 𝑎, besidesm itself.

3.1.3. LS Solutions. For both LS approaches, the error vector
can bewritten in a general form as e = HΘ−g, where vectorΘ
is comprised of the unknowns to be estimated, whereasH and
g are known matrix and vector, respectively. The structures
of the involved vectors and matrix are given in the following
equations for both T𝑎𝑏 and D𝑎 [23]:

e(T𝑎𝑏) = [[[[
[

1 2p𝑇1 𝑡̂21 2𝑡̂1... ... ... ...
1 2p𝑇𝑆 𝑡̂2𝑆 2𝑡̂𝑠

]]]]
]

[[[[[
[

𝑏2 − ‖m‖2
m
𝑎2
𝑎𝑏

]]]]]
]
− [[[[
[

󵄩󵄩󵄩󵄩p1󵄩󵄩󵄩󵄩2...󵄩󵄩󵄩󵄩p𝑆󵄩󵄩󵄩󵄩2
]]]]
]
,

e(D𝑎) = [[[[
[

2𝜏21 2p𝑇2 𝜏221... ... ...
2𝜏𝑆1 2p𝑇𝑆 𝜏2𝑆1

]]]]
]
[[[
[

‖m‖ 𝑎
m
𝑎2

]]]
]
− [[[[
[

󵄩󵄩󵄩󵄩p2󵄩󵄩󵄩󵄩2...󵄩󵄩󵄩󵄩p𝑆󵄩󵄩󵄩󵄩2
]]]]
]
.

(12)

Therefore, the entries and dimension of these variables
depend upon whether a TOF- or a TDOF-based solution is
searched.

Although the entries ofΘ are not independent from each
other, a better tradeoff between computational burden and
estimation accuracy is achieved when such a constraint is
neglected [23, 28]. By doing so, the nonlinear problems in
(10) and (11) can be written as the following unconstrained
LS problem:

min
Θ

‖e‖2 , (13)

whose closed-form solution is

Θ̂ ≜ (H𝑇H)−1H𝑇g. (14)

In (14), it is assumed thatH is a full-rankmatrix, whichmeans
that 𝑆 ≥ 6 for both the T𝑎𝑏 and D𝑎 techniques.

When one can assume that 𝑎 = V, that is, there are no
sampling frequency mismatches, and the speed of sound is
known a priori, then the TDOF-based model can be written
as

e(D) = [[[[
[

2V𝜏21 2p𝑇2... ...
2V𝜏𝑆1 2p𝑇𝑆

]]]]
]
[‖m‖
m
] − [[[[

[

󵄩󵄩󵄩󵄩p2󵄩󵄩󵄩󵄩2 − V2𝜏221...󵄩󵄩󵄩󵄩p𝑆󵄩󵄩󵄩󵄩2 − V2𝜏2𝑆1

]]]]
]
. (15)

Its corresponding LS solution, denoted by subscript D
(TDOF-based with no auxiliary parameter), is related to the
one presented in [28, 29] for the SSL problem.
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It is worth pointing out the strong dependence of the LS
solutions on the estimated TOFs or TDOFs, whose errors
may have a harmful effect on the localization accuracy. This
fact motivates the use of a different approach that tries to
estimate the sensor position directly, without resorting to
prior TOF or TDOF estimation. SRP-inspired solutions allow
one to do that, as described in the next section.

3.2. Steered-Response Power. The SRP technique was origi-
nally proposed for SSL problems usingmicrophone array, but
it can be adjusted to ASL as follows.

In this context, the SRP divides the search space into
a grid of points representing possible candidates for the
microphone position and measures the overall similarity
among emitted and received signals related to each of these
points. The point with highest similarity is selected as the
estimate of the microphone position. Thus, the SRP in the
ASL context searches for the grid point x ∈ R3 that
maximizes the following objective function:

𝑊(x) ≜ 𝑆∑
𝑠=1

𝑅GCC
𝑠 [𝑘𝑠 (x)] , (16)

where 𝑘𝑠(x) is the discrete-time TOF assuming that the
microphone position ism = x. When 𝑅GCC

𝑠 [𝑘] is the result of
applying the PHAT filter to the CCF, the technique is known
as SRP-PHAT.

When using a dense grid of points covering the entire
search space, the SRP technique achieves accurate position
estimates even in reverberant scenarios, as all TOFs are
considered simultaneously in a joint optimization procedure.
However, the SRP drawback is its high computational burden
due to the exhaustive search throughout the many points of
the grid.

It is important to highlight here that SRP-inspired solu-
tions have not been thoroughly explored in the ASL context.
For example, the impact of the affine model in (9) on the
performance of SRP-inspired solutions should be studied,
especially with regard to the bias 𝑏 (this problem does not
appear in SSL techniques, for they use TDOFs).This seems to
be a reasonable research direction, which could also benefit
from modifications on the SRP proposed to circumvent
the high computational burden when solving SSL problems
[24, 30–33]. Some of these strategies avoid the exhaustive
search throughout the entire grid, like in [30], and therefore
cannot guarantee accurate position estimates, as parts of the
search space are not explored. More interesting results were
obtained by the strategies that perform the exhaustive search
throughout a grid of regions covering the entire search space,
such as in [24, 32, 33]. The advantage over the standard SRP
comes from the fact that the grid of regions can be made
much coarser than the grid of points and still reach accurate
estimates.

The next section describes a new technique that puts
together a prior step of TDOF estimation, which usu-
ally yields computationally simple solutions, and the SRP-
inspired idea of an exhaustive search over a grid of regions,
which tends to improve the robustness of the method.

3.3. Region-Based Search. Consider a division of the whole
search region V ⊂ R3 in a number 𝐶 ∈ N of compact,
disjoint, and connected regions (e.g., cuboids)V𝑐 ⊂ V , with𝑐 ∈ {1, 2, . . . , 𝐶}, over which the search will be performed
(hereinafter, it is assumed that the regions are cuboids). Each
TDOF gives rise to a hyperboloid that is the locus of all
candidate spatial points that are consistent with that TDOF.
If the hyperboloid related to TDOF 𝜏𝑠1𝑠2 intersects cuboid
V𝑐, then TDOF 𝜏𝑠1𝑠2 is coherent with that cuboid [24]. It can
be proven using the Karush-Kuhn-Tucker (KKT) conditions
[34] that the coherence test can be implemented in a very
efficient way—see Theorem 3 and Corollary 1 of [24]. This
result shows that the TDOF 𝜏𝑠𝑟(x) of any point x insideV𝑐 is
within the interval (observe that the TDOF notation 𝜏𝑠1𝑠2 was
replaced by 𝜏𝑠𝑟, with 𝑠, 𝑟 ∈ S, to emphasize that the second
loudspeaker acts as a reference speaker):

I
𝑠𝑟
𝑐 = [min

𝑗
𝜏𝑠𝑟 (k𝑗𝑐) ,max

𝑗
𝜏𝑠𝑟 (k𝑗𝑐)] ⊂ R, (17)

where v𝑗𝑐 ∈ R3 (𝑗 ∈ {1, 2, . . . , 8}) is the position of
the 𝑗th vertex of cuboid V𝑐. Note that (17) implies that
comparisons are the only operations required to perform the
coherence test, since the TDOF bounds for each cuboid can
be precomputed just once and stored in a lookup table.

EachTDOF information is usually consistent with several
cuboids and thus does not suffice to determine the cuboid
that indeed contains the sensor; in fact, one has to aggregate
information from all loudspeakers in order to choose the
cuboid that most likely contains the sensor. Mathematically,
by defining the coherence test through the indicator function

I𝑐 (𝜏𝑠𝑟) = {{{
1, if 𝜏𝑠𝑟 ∈ I𝑠𝑟𝑐

0, otherwise, (18)

a robust objective function that implicitly assesses the likeli-
hood of the 𝑐th cuboid containing the sensor is defined as

L𝑐 =
𝑆−1∑
𝑟=1

𝑆∑
𝑠=𝑟+1

I𝑐 (𝜏𝑠𝑟) . (19)

Assuming the TDOFs associated with everymicrophone pair
are known (in practice, they are estimated), L𝑐 essentially
counts the number of those TDOFs which are coherent with
the 𝑐th cuboid. The cuboid with highest L𝑐 is the one that
most likely contains the sensor. The reader should observe
that the computational complexity of evaluating (19) is very
low, as it requires only counting and comparisons. It should
be highlighted that there are alternative objective functions
in the SSL literature whose definition andmotivation are very
similar to that of (19)—see [30, 32, 33].

Alternatively, the following objective function could also
be employed:

L
󸀠
𝑐 =

𝑆∑
𝑠=1,𝑠 ̸=𝑟

I𝑐 (𝜏𝑠𝑟) . (20)

In comparison to L𝑐, L
󸀠
𝑐 uses a single loudspeaker (the𝑟th one) as reference and, therefore, it is not as robust as
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L𝑐 for it relies on an accurate estimate of the 𝑟th TOF.
Equation (19), on the other hand, employs all pairs of TDOFs,
which is in some sense related to the “principle of least
commitment” [35] to which some researchers attribute the
excellent performance of SRP techniques [36].

The search procedure usually begins with a coarse volu-
metric grid covering the entire search space [32]. For instance,
one can divide each spatial dimension in 𝐿 ∈ N parts
of equal length, generating 𝐶 = 𝐿3 cuboids, each with
dimensions (𝑙𝑥/𝐿) × (𝑙𝑦/𝐿) × (𝑙𝑧/𝐿), where the entire search
space V is supposed to be a cuboid with edges of sizes 𝑙𝑥,𝑙𝑦, and 𝑙𝑧. Then, a hierarchical search takes place where
the candidate cuboids are tested in order to verify their
coherence with the available TOF/TDOF information [31].
This search can sometimes be posed within the branch-and-
bound paradigm [24] originally devised for combinatorial
and discrete optimization problems [37]. Given the current
candidate cuboids, the generation of the next set of candidate
regions starts by the selection of those (winner) cuboids that
maximize some objective function.Then, eachwinner cuboid
is recursively partitioned into smaller cuboids, each of them
carrying more specific information about its portion of space
[31]. The iterative process advances until some stop criterion
is met—for instance, the maximum number of iterations is
achieved.

At this point, it might be clear that the practical issues
mentioned in Section 2.4 impair the accuracy of the TOF or
TDOF estimates. Since the new region-based approach of this
section and the LS approaches in Section 3.1 strongly depend
on these estimates, it becomes crucial to obtain accurate
TOF/TDOF estimates which are robust to these practical
issues.This is why the techniques presented in Section 4 focus
on improving TOF estimates.

4. Improving TOF/TDOF Estimates

This section describes three techniques from the literature
that improve the accuracy of TOF/TDOF estimates. Sec-
tion 4.1 details the slidingwindows approach,which resorts to
physical constraints to define time-windows likely to contain
the actual TOFs. Section 4.2 describes a method that uses
matching pursuit (MP) algorithms to select candidate TOF
estimates within the previously defined time-windows, while
cleaning spurious components that appear in CCFs or GCC
functions. Section 4.3 shows how one can change the selected
TOFs in order to improve the final localization accuracy.

4.1. SlidingWindows. Each CCF (or GCC)may presentmany
peaks, hampering the task of detecting the peak associated
with the direct path. In order to overcome this difficulty,
a set of physical constraints the actual TOFs must satisfy
can be imposed on the search for the direct-path CCF
peak.These constraints stem from room geometry and probe
signals’ inherent structure, such as duration and cyclical
nature—ubiquitous in asynchronous passive ASL systems.
The sliding windows (SW) approach proposed in [23] is
a robust and computationally efficient technique employed
to search for CCF peaks while taking into account the
aforementioned constraints.
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Figure 1: Illustration of the ability of the SW technique to estimate
the correct loudspeakers’ emission order. Example of windows (in
green) that (a) do not have the correct emission order and (b) have
the correct emission order. Note that windows are delayed in distinct
CCFs in order to compensate for the transmission delay between
different loudspeakers.

The key idea underlying the SW technique is to jointly
search for the direct-path peaks across all CCFs simulta-
neously. This joint optimization is conducted by adding
the selected peaks within fixed-duration windows defined
in order to account for possible errors due to acoustic
impairments, such as reverberation, interference, and LOS
obstruction.The duration of those windows satisfies physical
constraints based on room dimensions (e.g., the maximum
lag can be upper bounded by the room diameter—maximum
distance between points within the room—divided by the
speed of sound). Moreover, the knowledge of the delay
between consecutive emissions of different loudspeakers as
well as the probe signals’ durations is used to constrain the
distance between windows from the corresponding CCFs.

Figure 1 illustrates the way SW technique works in a
simplified setup. Consider an anechoic room where four
loudspeakers emit cyclical impulses as probe signals. Assume
there is a fixed delay between emissions from different
loudspeakers, which is handy in practical reverberant envi-
ronments for it helps to deal with signal superpositions,
although not mandatory in this toy-example. The first step
is to define time-windows (depicted as green boxes in
Figure 1) based on the maximum admissible propagation
delays within the room. After that, the windows (one for
each CCF) are spaced apart based on the fixed delay between
consecutive emissions of probe signals. Then, the values of
the highest CCF peak within each window are added and
stored. A sliding windows process takes place in order to
evaluate the initial time-index for which the aforementioned
accumulated peak values achieve their maximum. Figure 1(a)
shows the windows in a positionwhere the accumulated peak
values are not maximal; the sliding process continues in a
cyclical fashion, accounting for the cyclical emission of probe
signals, as illustrated in Figure 1(b), where the maximum
is finally achieved. Thus, the SW technique also has the
ability to blindly detect the emission order of the probe
signals in the acquired signal, regardless of the order ambi-
guity induced by the asynchrony among transmitters and
receivers.
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Mathematically, the SW technique yields a set of time-
windowsW𝑠, inwhich the 𝑠thTOF should be located, defined
as [23]

W𝑠 ≜ {𝑘max + (𝑢𝑠 − 1) 𝛿 − 𝐾, . . . , 𝑘max + (𝑢𝑠 − 1) 𝛿
+ 𝐾} , (21)

where 𝑘max is related to the start of the windows that (one
expects to) contain the actual TOFs, 𝛿 is the fixed delay
between windows (easily defined based on the duration
of a complete probe signal cycle), 𝐾 is dependent on the
dimensions of the room and defines the duration of the
windows, and [𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢𝑆] is a right-cyclical shift of
vector [1 2 ⋅ ⋅ ⋅ 𝑆].

It is noteworthy that the highest peak inside W𝑠 often
corresponds to the desired 𝑠th TOF and, when this does
not happen, the search for the correct peak should be done
inside the windowW𝑠, whose length is usually much shorter
than the 𝑠th CCF/GCC support, significantly reducing the
computational burden of forthcoming stages that try to
correct misestimated TOFs. In fact, choosing the correct
peak within those windows may still be rather challenging
depending on the ASL environment. This fact calls for
nonlinear processing (see Section 4.2) that goes beyond the
linear processing implemented by CCF-based approaches.

4.2. Matching Pursuit. Using the lag associated with the
highest CCF peak as TOF estimate is equivalent to employing
matched filters for the TOF-estimation task [38]. As seen
before, multipath propagation, along with other acoustic
phenomena, modifies the desired correlation properties of
the probe signals, hampering the TOF-estimation task. Away
to circumvent such issues consists of performing a precise
estimation of the channel-impulse response (CIR), which can
be done if the probe signals are known.The time stamp of the
first nonzero coefficient of the estimated CIR should be the
desired TOF in an ideal setup.

A natural candidate for CIR estimation is the maximum
likelihood (ML) estimate, whose solution, under some mild
hypotheses, is equivalent to an unconstrained and nonreg-
ularized least-squares (LS) estimate, in the absence of noise
measurement and interferences [39] (in fact, the equivalence
remains even under normally distributed noise [40]).

Besides its lack of robustness under non-Gaussian per-
turbations [41], the ML solution is not feasible for real-time
localization systems due to its high computational complex-
ity. The authors in [20] proposed a greedy pursuit for CIR
estimation, specifically the matching pursuit (MP) algorithm
[42]. Such strategy was motivated by [43], which developed
a CIR estimation algorithm for multiuser environments in
code division multiple access (CDMA) systems, aiming at
TOF-based radio localization. The authors in [43] compared
the ML and MP techniques, eventually concluding that the
last outperforms the former. The inferior ML performance
is attributed to the underlying overparameterization of the
CIR, which makes the detection of the actual TOF unreliable
[43].

The MP algorithm relies on sparse representations of the
signals of interest [44], working by progressively isolating

(1) procedure TofEstimation(𝑠,𝑁𝑝,P𝑠)
(2) 𝑦[𝑛] ←󳨀 𝑦[𝑛]
(3) 𝑛It ←󳨀 0
(4) while 𝑛It < 𝑁𝑝 do
(5) ∀𝑘 ∈ P𝑠 : 𝑅𝑠 [𝑘] ←󳨀 ∑

𝑛∈N

𝑦[𝑛]𝑥𝑠[𝑛 − 𝑘]
(6) 𝑘𝑝[𝑛It] ←󳨀 argmax

𝑘

|𝑅𝑠[𝑘]|
(7) 𝛼[𝑛It] ←󳨀 𝑅𝑠[𝑘𝑝[𝑛It]]
(8) 𝑦[𝑛] ←󳨀 𝑦[𝑛] − 𝛼[𝑛It]𝑥𝑠[𝑛 − 𝑘𝑝[𝑛It]]
(9) 𝑛It ←󳨀 𝑛It + 1
(10) end while

(11) 𝑡̂𝑠 ←󳨀 (min{𝑘𝑝[𝑚]})𝐹
(12) return 𝑡̂𝑠 (𝑠th estimated TOF)
(13) end procedure

Algorithm 1: TOF estimation by MP algorithm.

the signal structures which are coherent with a predefined
dictionary of signals. In the context of ASL, the works [12,
20] employ the MP algorithm to describe an excerpt of the
recorded signal as a linear combination of delayed versions
of one probe signal. Such decomposition permits to infer the
direct-path delay even when its CCF/GCC peak is highly
attenuated compared to peaks corresponding to reflected-
path delays.

Suppose one has good reasons to believe that the early
arrivals of the signal emitted by the 𝑠th loudspeaker occur at
the set of indexes P𝑠 (e.g., P𝑠 = W𝑠 given in (21)) of the
recorded signal 𝑦[𝑛]. Assuming that the𝑁𝑝 most significant
channel coefficients extracted by the MP contain the actual
TOF, the estimation of the 𝑠th TOF could be performed as
described in Algorithm 1. Note that this algorithm can easily
provide a set of 𝑁𝑝 candidate TOF estimates corresponding
to the 𝑠th loudspeaker.

When the 𝑁𝑝 parameter employed in Algorithm 1 is too
large, or when probe signals are not completely orthogonal,
some spurious components may appear before the direct-
path delay, as illustrated in Figure 2. One can circumvent this
issue by establishing a detection threshold, as proposed in
[20].

It should be pointed out that, even when Algorithm 1
fails, it yields a number (𝑁𝑝) of TOF candidates that is much
smaller than the number of CCF/GCC peaks; this is key
to further performing a refined search for the correct peak
without significantly increasing the computational burden (it
is assumed here thatP𝑠 contains the actual TOF). A possible
refinement step is described in the next section.

4.3. TOF Selection. As explained before, reverberation and
LOS obstruction between loudspeaker and sensor nodes
(and other issues) may severely impair the TOF estimate
and, therefore, the overall localization procedure [45]. One
way of tackling those issues consists of wisely selecting the
TOFs from the peaks of the CCFs/GCCs when they are
not the highest ones, or even discarding some CCF/GCC
information when the actual TOF cannot be found in it
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Figure 2: Example of MP decomposition. (a) Original CCF; (b)
the first 7 components extracted with Algorithm 1. The spurious
components that appear before the actual TOF are depicted inside
the red box.

[23, 45]. Note that such strategy, henceforth called “TOF
selection” or simply TS, does not perform an exhaustive
search over a grid of spatial points nor requires evaluations
of complex functionals; therefore, it is expected to demand
fewer numerical operations than SRP-inspired algorithms.

Each CCF/GCC usually provides many peaks and, con-
sequently, a combinatorial search for the best combination
of peaks may be infeasible in some applications. In order to
perform a computationally efficient search, the TS technique
should rely on some physically plausible heuristics. One
possible heuristics example, for instance, makes use of the
fact that spurious CCF/GCC peaks generated by multipath
propagation often occur after the correct peak, because non-
LOS paths are longer [23]. This assumption motivates a
search among peaks that occur before the current one if its
correctness is under question. Another example of heuristics
takes into account that the magnitude of an erroneously
detected peak is slightly larger than the magnitude of the
correct CCF/GCC peak in a high-SNR regime without LOS
obstruction [23]. A more common hypothesis states that the
highest CCF/GCC peak is often associated with the desired
TOF information.

Such heuristics are not sufficient for reliable TOF esti-
mation in practical environments. In general, they should
be connected with an objective function that incorporates
geometric constraints in order to assess a specific set of
candidate TOFs. Such assessment, which takes into account
available a priori information, is key to solving inverse prob-
lems [31]. One example of such geometric-based function
is the maximum discrepancy between the position obtained
by feeding the localization procedure with the TOFs (or
TDOFs) estimated from the CCFs/GCCs and the TOFs (or
TDOFs) that would have been observed if the sensor were
indeed at the estimated position [23]. Another example is the
coherence of the current set of estimated TOFs (or TDOFs)
with one ormore spatial regions [45] (see Section 3.3 formore
details).

The TS strategy begins with an evaluation of the objective
function, whose result should meet a stop criterion. Such
criterion can test whether a threshold is not violated and/or
whether the maximum number of iterations is not exceeded.
While such criterion is not satisfied, a “Refine” procedure
should be used. Such refinement represents the core proce-
dure of this method, which updates the current set of TOF
(or TDOF) candidates and may even include a procedure for
discarding some CCFs/GCCs from which one cannot extract
a reliable TOF (or TDOF) estimate [23].

5. Proposed ASL System

As the localization techniques described in Section 3 present
complementary benefits, the proper choice of the technique
to be used strongly depends on the requirements of the
particular ASL application. In addition, the recent advances
described in Section 4 have proved to work in practice and
their combinationswith the techniques in Section 3 open up a
myriad of exciting research directions that have not been fully
explored in theASL context.This section contains an example
of how one can put together the advantage of all techniques
in Section 4 along with the region-based search proposed in
Section 3.3, giving rise to a novel ASL system.

As mentioned before, SRP-inspired searches present high
computational complexity due to the required evaluation
of many complex functionals. Converting the search into a
selection of correct candidate TOFs among the CCF/GCC
peaks is an interesting alternative as long as the number
of such peaks is small. This is not the case, however, if
each CCF/GCC presents many peaks. Resorting to MP-
based algorithms is a convenient way of circumventing such
problem—recall that Algorithm 1 may return a variable
number (𝑁𝑝) of candidate CCF/GCC peaks. Nevertheless,
the MP algorithm should be fed with a set of indexesP𝑠, for
the 𝑠th loudspeaker, in which the early arrival of the related
probe signal is likely to be (see Section 4.2). This set P𝑠
must have a small cardinality; otherwise the computational
complexity becomes prohibitively high. Fortunately, a robust
estimate of a relatively small set P𝑠 = W𝑠 for each loud-
speaker can be performed by the SW technique described
in Section 4.1; indeed, the SW technique can deliver a small
excerpt of the recorded signal to the MP-based 𝑠th TOF-
estimation algorithm, which may then return 𝑁𝑝 candidate
TOFs for each loudspeaker. Using the common assumption
that the highest CCF/GCC peak (or, equivalently, the highest
coefficient extracted by the MP method) is often related to
the desired TOF, a reasonable strategy consists of using the
highest coefficients obtained by the MP as a preliminary
starting point for the set of estimatedTOFs.This set cannot be
directly used to infer the sensor location with LS techniques
(like T𝑎𝑏 or D𝑎) because such techniques are very sensitive to
TOFs/TDOFs errors [22], and one cannot assure beforehand
that the initial set of TOFs is accurate (one may only expect
that most of TOF/TDOF information is correct). At this
point, the new robust region-based search mechanism—see
Section 3.3— that solves the inverse problem of inferring the
sensor location from the data by progressively partitioning
some candidate regions (i.e., the winner ones) takes place.
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(1) procedure TofSelection(k1, . . . , k𝑆, t𝑐, c𝑤, 𝑁𝑝)
(2) for 𝑠 fl 1 to 𝑆 do
(3) for 𝑚 fl 1 to 𝑁𝑝 do
(4) 𝑡̃𝑠[𝑚] ←󳨀 𝑘𝑠[𝑚]𝐹
(5) end for
(6) end for
(7) for 𝑠 fl 1 to 𝑆 do
(8) fitness ←󳨀 [0, . . . , 0]

1×𝑁𝑝

(9) for 𝑚 fl 1 to 𝑁𝑝 do
(10) t←󳨀 t𝑐
(11) 𝑡[𝑚] ←󳨀 𝑡̃𝑠[𝑚]
(12) for 𝑖 fl 1 to #c𝑤 do
(13) fitness[𝑚]←󳨀 fitness[𝑚] +L𝑐𝑤[𝑖](t)
(14) end for
(15) end for
(16) 𝑚̂ ←󳨀 argmax fitness[⋅]
(17) 𝑡̂[𝑠] ←󳨀 𝑡̃𝑠[𝑚̂]
(18) end for
(19) end procedure

Algorithm 2: TOF selection by geometric constraints.

A simple choice is the use of cuboids, thus generating23 = 8 children cuboids from the parent one by dividing
each dimension into two equal parts. For each candidate
cuboid, one can evaluate the objective function (19), whose
computational complexity is very low.Cuboids thatmaximize
such functional are selected for further decompositions. Due
to the “principle of least commitment” [35] it is expected
that the winner cuboids contain the sensor location, which
imposes additional geometric constraints to the TOF/TDOF
data. Such constraints can be employed to perform a smart
selection of the TOFs—remember that (18) indicates whether
some TDOF data is coherent with a given cuboid. This
selection is rather favored by the previous application of
the MP-based TOF detection step, since it delivers only 𝑁𝑝
candidate TOFs for each loudspeaker, with𝑁𝑝 being typically
smaller than 10 [12, 20].

Algorithm 2 describes the proposed TOF-selection
scheme. Vector c𝑤 contains the indexes 𝑐𝑤[𝑖] of current
winner cuboids, vectors k𝑠, with 𝑠 ∈ S, contain the𝑁𝑝 sample
indexes 𝑘𝑠 [𝑚] of the 𝑠th loudspeaker candidate peaks, and t𝑐
contains the current set of TOF estimates. Note that the core
calculation of this algorithm is performed in line 13, which
employs (19), whose computational cost is negligible since it
does not require multiplication nor division operations (only
comparisons and sums). Algorithm 2 returns vector t̂, which
contains a set of updatedTOFdata.After the geometric-based
selection of the next set of candidate TOFs, one may again
proceed to a new decomposition step, until some criterion
is met (typically, until the prescribed maximum number of
iterations is reached). Although such recursive procedure
is not pointwise, one may easily obtain a point estimation
for the sensor location by evaluating the mass center of the
last winner cuboid (it should be stressed that at the final
step of the described procedure only one cuboid remains, in
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Figure 3: Block diagram of the proposed ASL system.

Table 1: Coordinates (in meters) of each loudspeaker.

Index 𝑥 𝑦 𝑧
1 0.3520 5.5430 2.2570
2 0.3880 5.5620 1.7065
3 0.6160 0.8275 2.0105
4 0.3120 2.8905 1.6430
5 0.3420 2.8725 0.9850
6 4.5720 3.0250 1.6020
7 4.5630 3.0185 1.0075
8 2.3315 0.5235 1.1710
9 4.5330 5.5830 2.2605
10 4.4740 5.5505 1.6875
11 4.1700 0.9000 2.0160

general). Figure 3 presents a block diagram of the proposed
method.

6. Experimental Results

The main goal of this section is to present an evaluation of
the proposedmethod (described in Section 5) in a real-world
scenario, as a proof of concept.

6.1. Experimental Setup. The test environment is a lecture
room with a measured reverberation time (𝑇60) of approx-
imately 500ms and dimensions 5.2m × 7.5m × 2.6m. Eleven
loudspeakers with a diameter of 7.6 cm are located according
to the positions indicated in Table 1. A mobile device is
located at position {1.746, 4.425, 0.748}mwith the automatic
gain control (AGC) activated. The captured signals, for each
estimation, have durations of 0.55 s. The signal is recorded at𝐹 = 48 kHz with 24-bit precision.

In order to provide an accurate localization procedure,
the probe signals should meet several prerequisites, namely,
low audibility, high orthogonality, robustness against interfer-
ences, and short duration (which guarantees a high refresh
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Table 2: Median localization error (in cm) for different choices of emission power 𝑃 (in dB, relative to a standard power level). The number
of MP decompositions is𝑁𝑝 and the number of hierarchical cuboid decompositions is𝑁𝑐.
𝑁𝑝 TS− TS+ TS− TS+ TS− TS+

𝑁𝑐 = 4 𝑁𝑐 = 6 𝑁𝑐 = 8𝑃 = 0 dB
1 50.42 50.42 44.39 44.39 44.37 44.37
3 50.42 18.28 44.39 18.28 44.37 18.16
5 50.42 8.00 44.39 13.79 44.37 11.80
7 50.42 8.00 44.39 13.79 44.37 12.78

𝑃 = −6 dB
1 34.06 34.06 31.04 31.04 33.02 33.02
3 34.06 18.28 31.04 17.50 33.02 17.08
5 34.06 8.00 31.04 16.08 33.02 15.01
7 34.06 8.00 31.04 13.79 33.02 11.45

𝑃 = −12 dB
1 50.42 50.42 43.54 43.54 45.40 45.4
3 50.42 22.76 43.54 26.88 45.40 28.55
5 50.42 18.71 43.54 22.55 45.40 21.5
7 50.42 18.71 43.54 19.18 45.40 17.44

𝑃 = −18 dB
1 50.42 50.42 56.71 56.71 56.72 56.72
3 50.42 34.06 56.71 31.63 56.72 32.65
5 50.42 18.71 56.71 17.91 56.72 18.06
7 50.42 18.71 49.67 26.16 50.1 24.88

𝑃 = −24 dB
1 50.42 50.42 57.73 57.73 58.48 58.48
3 50.42 18.71 57.73 14.04 58.48 12.39
5 50.42 13.14 57.73 15.17 58.48 16.21
7 50.42 18.71 57.73 17.76 58.48 17.98

rate of the sensor location). In the following experiments,
a new set of probe signals, called polyphonic chirps, were
designed tomeet such requirements.The starting point of the
polyphonic chirps consists of linear chirps, whose bandwidth
ranges from 14.0 to 20.0 kHz, with amplitudes following the
inverse A-weighting curve (which is the inverse of the human
relative loudness [46]), so that there is an increasing gain
from 14 to 20 kHz. One can define 4 subbands from the pri-
mary chirp signal, namely, from 14.0 to 15.5 kHz, from 15.5 to
17.0 kHz, from 17.0 kHz to 18.5 kHz, and from 17.5 to 20.0 kHz.
Within each subband, one can play a chirp with increasing
frequency or with decreasing frequency. Bit 0 is associated
with the latter and bit 1 with the former. Hence, one can assign
to each loudspeaker a 4-bit codeword whose bits, from the
most to the least significant, are associated with the subchirps
from the lowest to the highest frequency band. Therefore,
4 subchirps are expected to be simultaneously played-back
by each loudspeaker, giving birth to a specific polyphonic
chirp. Additionally, modifications were heuristically (in the
sense that they were based on the audibility level of the
resulting probe signals) taken to shorten the probe signals
audibility: the two lower-frequency subchirps are attenuated
by factors of 20 (subband 14.0–15.5 kHz) and 10 (subband
15.5–17.0 kHz). Further, each polyphonic chirp follows a 5-ms
fade-in/fade-out envelope to hide undesirable discontinuities

at the start and at the end of the underlying signals. A cyclical
emission of 30-ms polyphonic chirps is performed, following
an order previously known by the sensor node.There is a 20-
ms silence interval between consecutive emissions, aiming
at reducing the effects of interference and signal superposi-
tion caused by reverberation. It should be emphasized that
through informal listening tests under typical environmental
conditions, we found that these chirps are inaudible for most
people.

The probe signals were emitted with power 𝑃 dB relative
to a standard power level, with 𝑃 ∈ {0, −6, −12, −18, −24}.
The purpose of the experiment is to assess the importance of
geometric-based TOF-selection procedure (see Algorithm 2)
with different levels of emitted power. For each configuration,
100 different excerpts were employed to provide different
localization estimates, whose error statistics are presented in
the following.

6.2. Median Localization Error. This section aims at assess-
ing the impact of different choices of the number of MP
decompositions 𝑁𝑝 and the number of hierarchical cuboid
decompositions 𝑁𝑐 on the localization accuracy. Table 2
presents the results with TOF-selection procedure disabled
(TS−) and TOF-selection procedure enabled (TS+). From this
table, one can conclude that the TOF selection is very effective
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Figure 4: Localization error (within a 50 cm range) for each recorded signal excerpt and respective CDF with 𝑃 = (a) 0, (b) −6, (c) −12, (d)−18, and (e) −24 dB. Blue: localization procedure with TOF selection disabled. Red: localization procedure with TOF selection enabled.

in reducing the median error provided there exists more
than one TOF candidate (i.e., 𝑁𝑝 > 1). The use of such
procedure has never increased the median localization error
and sometimes reduces it inmore than 70%.Hence, fromnow
on it is considered that the TOF selection is always enabled.
Regarding the number of MP decompositions, choices of𝑁𝑝 between 5 and 7 (inclusive) appear to achieve a good
compromise between accuracy and computational cost. The
use of a large number of hierarchical decompositions 𝑁𝑐 is

usually not a wise strategy, since it increases the probability
of selecting an erroneous cuboid, which harms the posterior
hierarchical search. It should be noticed that the method
works even with extremely low power emission (in general,
when 𝑃 = −24 dB, the loudspeaker sound is inaudible).
6.3. CDF of the Error. In order to evaluate the impact of the
emitted power on the localization accuracy, Figure 4 shows
the localization error (when it is smaller than 50 cm) and the
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cumulative distribution function (CDF) of the localization
error with 𝑁𝑝 = 5 MP extracted components and 𝑁𝑐 = 4
hierarchical decompositions of cuboids. These results reveal
a progressive accuracy degradation with the reduction of the
power emission. Moreover, the advantage of employing the
proposed TS technique is also clear from those results.

7. Concluding Remarks

This paper serves three purposes. First, it presents a brief
review of the vast literature of acoustic sensor localization
(ASL) for those beginning in this field. Indeed, a wide range
of topics are covered, ranging from the fundamentals of
ASL to some state-of-the-art techniques. Second, this paper
provides new research directions within the ASL field by
explaining how one can borrow some concepts from its dual
problem: the sound source localization (SSL). In this way,
many research opportunities are opened. Third, this paper
proposes a new ASL technique that combines region-based
search (which is inspired by some recently proposed SSL
techniques that employ hierarchical searches) and matching
pursuit estimation of times-of-flight (TOFs).

Another difference from our previous work [23] is that
the ASL technique proposed here works with probe signals
which are inaudible for most people, as they have low power
and contain only high-frequency components. However, the
use of such probe signals makes the TOF estimation a
much more challenging task. This explains why robust TOF-
estimation techniques are thoroughly discussed throughout
the paper.

A real-world experiment was conducted in order to
demonstrate that the proposed ASL technique is capable of
estimating the position of mobile devices with a median
localization error below 20 cm. Usually, the ultimate goal of
many practical ASL systems is to find the position of someone
carrying a mobile device and, therefore, an estimation error
inferior to 20 cm is rather reasonable.
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acoustic local positioning system for portable devices with
multipath cancellation,” Digital Signal Processing, vol. 62, pp.
38–51, 2017.

[13] V. Raykar and R. Duraiswami, “Automatic position calibration
of multiple microphones,” in Proceedings of the IEEE Interna-
tional Conference onAcoustics, Speech, and Signal Processing, pp.
69–72, Montreal, Que., Canada.

[14] J. M. Sachar, H. F. Silverman, andW. R. Patterson, “Microphone
position and gain calibration for a large-aperture microphone
array,” IEEE Transactions on Speech and Audio Processing, vol.
13, no. 1, pp. 42–52, 2005.

[15] S. T. Birchfield andA. Subramanya, “Microphone array position
calibration by basis-point classical multidimensional scaling,”
IEEE Transactions on Speech and Audio Processing, vol. 13, no. 5,
pp. 1025–1034, 2005.

[16] I. McCowan, M. Lincoln, and I. Himawan, “Microphone array
shape calibration in diffuse noise fields,” IEEE Transactions on



Wireless Communications and Mobile Computing 13

Audio, Speech and Language Processing, vol. 16, no. 3, pp. 666–
670, 2008.

[17] V. C. Raykar, I. V. Kozintsev, and R. Lienhart, “Position calibra-
tion ofmicrophones and loudspeakers in distributed computing
platforms,” IEEE Transactions on Speech and Audio Processing,
vol. 13, no. 1, pp. 70–83, 2005.

[18] L. Wang, T.-K. Hon, J. D. Reiss, and A. Cavallaro, “Self-
localization of ad-hoc arrays using time difference of arrivals,”
IEEE Transactions on Signal Processing, vol. 64, no. 4, pp. 1018–
1033, 2016.

[19] R. Pfeil, M. Pichler, S. Schuster, and F. Hammer, “Robust acous-
tic positioning for safety applications in underground mining,”
IEEE Transactions on Instrumentation and Measurement, vol.
64, no. 11, pp. 2876–2888, 2015.
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