11 research outputs found

    Annals of General Psychiatry / Alcohol consumption in Austrian physicians

    No full text
    Background Alcohol is one of the leading exogenous causes for adverse health consequences in Europe. The aim of the present study was to examine the pattern of alcohol consumption in Austrian physicians. Methods A telephone survey was conducted in 400 office-based physicians in Austria. Our questionnaire included the four questions of the CAGE questionnaire and questions to assess alcohol consumption on the previous day. Results 131 participants (32.8%) completed the interview. 3.8% of the subjects had a CAGE score of 2 or higher indicating a problem with alcohol, but this rate was not statistically different from numbers reported for the general population (4.1%). 46.6% of our subjects had drunken alcohol on the previous day. Compared to the general population, the rate of having drunk alcohol yesterday was higher in both gender of our sample, but the amount of alcohol drunk was significantly lower. Doctors in rural areas had drunken alcohol more frequently and in greater quantities on the previous day than those in urban areas. There was a positive correlation between age and the amount of drinking on the previous day, and between age and CAGE scores. Furthermore, subjects who had consumed alcohol yesterday obtained higher scores on the CAGE. Conclusions Our findings indicate that the rate of Austrian physicians with problematic alcohol consumption is similar to the general population. Physicians in rural areas and older doctors might be of higher risk for alcohol abuse.(VLID)488925

    Meta-analysis of brain structural changes after electroconvulsive therapy in depression

    No full text
    Background: Increases in the volume of the amygdala and hippocampus after electroconvulsive therapy (ECT) are among the most robust effects known to the brain-imaging field. Recent advances in the segmentation of substructures of these regions allow for novel insights on the relationship between brain structure and clinical outcomes of ECT. Objective: We aimed to provide a comprehensive synthesis of evidence available on changes in brain structure after ECT, including recently published data on hippocampal subfields. Methods: A meta-analysis of published studies was carried out using random-effects models of standardized mean change of regional brain volumes measured with longitudinal magnetic resonance imaging of depressive patients before and after a series of ECT. Results: Data from 21 studies (543 depressed patients) were analysed, including 6 studies (118 patients) on hippocampal subfields. Meta-analyses could be carried out for seven brain regions for which data from at least three published studies was available. We observed increases in left and right hippocampi, amygdalae, cornua ammonis (CA) 1, CA 2/3, dentate gyri (DG) and subicula with standardized mean change scores ranging between 0.34 and 1.15. The model did not reveal significant volume increases in the caudate. Meta-regression indicated a negative relationship between the reported increases in the DG and relative symptom improvement (−0.27 (SE: 0.09) per 10%). Conclusions: ECT is accompanied by significant volume increases in the bilateral hippocampus and amygdala that are not associated with treatment outcome. Among hippocampal subfields, the most robust volume increases after ECT were measured in the dentate gyrus. The indicated negative correlation of this effect with antidepressant efficacy warrants replication in data of individual patients

    Task-relevant brain networks identified with simultaneous PET/MR imaging of metabolism and connectivity

    No full text
    Except for task-specific functional MRI, the vast majority of imaging studies assessed human brain function at resting conditions. However, tracking task-specific neuronal activity yields important insight how the brain responds to stimulation. We specifically investigated changes in glucose metabolism, functional connectivity and white matter microstructure during task performance using several recent methodological advancements. Opening the eyes and right finger tapping had elicited an increased glucose metabolism in primary visual and motor cortices, respectively. Furthermore, a decreased metabolism was observed in the regions of the default mode network, which allowed absolute quantification of commonly described deactivations during cognitive tasks. These brain regions showed widespread task-specific changes in functional connectivity, which stretched beyond their primary resting-state networks and presumably reflected the level of recruitment of certain brain regions for each task. Finally, the corresponding white matter fiber pathways exhibited changes in axial and radial diffusivity during the tasks, which were regionally distinctive for certain tract groups. These results highlight that even simple task performance leads to substantial changes of entire brain networks. Exploiting the complementary nature of the different imaging modalities may reveal novel insights how the brain processes external stimuli and which networks are involved in certain tasks.(VLID)473577

    First-in-human brain PET imaging of the GluN2B-containing N-methyl-D-aspartate receptor with (R)-11C-Me-NB1

    No full text
    The N-methyl-D-aspartate receptor (NMDAR) plays a crucial role in neurodegenerative diseases such as Alzheimer’s disease and in the treatment of major depression by new fast-acting antidepressants such as ketamine. Given their broad implications, GluN2B-containing NMDARs have been of large interest as diagnostic and therapeutic targets. Recently, (R)-11C-Me-NB1 was investigated preclinically and shown to be a promising radioligand for imaging GluN2B subunits. Here, we report on the performance characteristics of this novel radioligand in a first-in-human PET study. Methods: Six healthy male subjects were scanned twice on a fully-integrated PET/MR scanner with (R)-11C-Me-NB1 for 120 min. Brain uptake and tracer distribution over time were investigated by standardized uptake values (SUV). Test-retest reliability was assessed with the absolute percentage difference (APD) and the coefficient of variation (COV). Exploratory total volumes of distribution (VT) were computed using an arterial input function and the Logan plot as well as a constrained two-tissue compartment model with K1/k2 coupled (2TCM). SUV was correlated with VT to investigate its potential as a surrogate marker of GluN2B expression. Results: High and heterogeneous radioligand uptake was observed across the entire gray matter with reversible kinetics within the scan time. SUV APD ranged from 6.8 - 8.5% and COV from 4.9 - 6.0%, indicating a high test-retest reliability. A moderate correlation was found between SUV averaged from 70-90 min and VT using Logan plot (Spearman’s rho = 0.44). Correlation between VT Logan and 2TCM was r= 0.76. Conclusion: The novel radioligand, (R)-11C-Me-NB1, was highly effective in mapping GluN2B-enriched NMDARs in the human brain. With a heterogeneous uptake and a high test-retest reliability, this radioligand offers promise to deepen our understanding of the GluN2B-containing NMDA receptor in the pathophysiology and treatment of neuropsychiatric disease such as Alzheimer’s disease and major depression. Additionally, it could help in the selection of appropriate doses of GluN2B-targeting drugs.ISSN:0097-9058ISSN:0022-3123ISSN:0161-5505ISSN:2159-662XISSN:1535-566

    Biodistribution and dosimetry of the GluN2B-specific NMDA receptor PET radioligand (R)-[11C]Me-NB1

    No full text
    Background The NMDA receptor (NMDAR) plays a key role in the central nervous system, e.g., for synaptic transmission. While synaptic NMDARs are thought to have protective characteristics, activation of extrasynaptic NMDARs might trigger excitotoxic processes linked to neuropsychiatric disorders. Since extrasynaptic NMDARs are typically GluN2B-enriched, the subunit is an interesting target for drug development and treatment monitoring. Recently, the novel GluN2B-specific PET radioligand (R)-[11C]Me-NB1 was investigated in rodents and for the first time successfully translated to humans. To assess whether (R)-[11C]Me-NB1 is a valuable radioligand for (repeated) clinical applications, we evaluated its safety, biodistribution and dosimetry. Methods Four healthy subjects (two females, two males) underwent one whole-body PET/MR measurement lasting for more than 120 min. The GluN2B-specific radioligand (R)-[11C]Me-NB1 was administered simultaneously with the PET start. Subjects were measured in nine passes and six bed positions from head to mid-thigh. Regions of interest was anatomically defined for the brain, thyroid, lungs, heart wall, spleen, stomach contents, pancreas, liver, kidneys, bone marrow and urinary bladder contents, using both PET and MR images. Time-integrated activity coefficients were estimated to calculate organ equivalent dose coefficients and the effective dose coefficient. Additionally, standardized uptake values (SUV) were computed to visualize the biodistribution. Results Administration of the radioligand was safe without adverse events. The organs with the highest uptake were the urinary bladder, spleen and pancreas. Organ equivalent dose coefficients were higher in female in almost all organs, except for the urinary bladder of male. The effective dose coefficient was 6.0 µSv/MBq. Conclusion The GluN2B-specific radioligand (R)-[11C]Me-NB1 was well-tolerated without reported side effects. Effective dose was estimated to 1.8 mSv when using 300 MBq of presented radioligand. The critical organ was the urinary bladder. Due to the low effective dose coefficient of this radioligand, longitudinal studies for drug development and treatment monitoring of neuropsychiatric disorders including neurodegenerative diseases are possible.ISSN:2191-219

    International Journal of Neuropsychopharmacology / Assessment of Ketamine Binding of the Serotonin Transporter in Humans with Positron Emission Tomography

    No full text
    Background Comprehensive description of ketamines molecular binding profile becomes increasingly pressing as use in real-life patient cohorts widens. Animal studies attribute a significant role in the substances antidepressant effects to the serotonergic system. The serotonin transporter is a highly relevant target in this context, because it is central to depressive pathophysiology and treatment. This is, to our knowledge, the first study investigating ketamines serotonin transporter binding in vivo in humans. Methods Twelve healthy subjects were assessed twice using [11C]DASB positron emission tomography. A total of 0.50 mg/kg bodyweight ketamine was administered once i.v. prior to the second positron emission tomography scan. Ketamine plasma levels were determined during positron emission tomography. Serotonin transporter nondisplaceable binding potential was computed using a reference region model, and occupancy was calculated for 4 serotonin transporter-rich regions (caudate, putamen, thalamus, midbrain) and a whole-brain region of interest. Results After administration of the routine antidepressant dose, ketamine showed <10% occupancy of the serotonin transporter, which is within the test-retest variability of [11C]DASB. A positive correlation between ketamine plasma levels and occupancy was shown. Conclusions Measurable occupancy of the serotonin transporter was not detectable after administration of an antidepressant dose of ketamine. This might suggest that ketamine binding of the serotonin transporter is unlikely to be a primary antidepressant mechanism at routine antidepressant doses, as substances that facilitate antidepressant effects via serotonin transporter binding (e.g., selective serotonin reuptake inhibitors) show 70% to 80% occupancy. Administration of high-dose ketamine is widening. Based on the positive relationship we find between ketamine plasma levels and occupancy, there is a need for investigation of ketamines serotonin transporter binding at higher doses.(VLID)458215

    Brain monoamine oxidase A in seasonal affective disorder and treatment with bright light therapy

    No full text
    Increased cerebral monoamine oxidase A (MAO-A) levels have been shown in non-seasonal depression using positron emission tomography (PET). Seasonal affective disorder (SAD) is a sub-form of major depressive disorder and is typically treated with bright light therapy (BLT). The serotonergic system is affected by season and light. Hence, this study aims to assess the relevance of brain MAO-A levels to the pathophysiology and treatment of SAD. Changes to cerebral MAO-A distribution (1) in SAD in comparison to healthy controls (HC), (2) after treatment with BLT and (3) between the seasons, were investigated in 24 patients with SAD and 27 HC using [11C]harmine PET. PET scans were performed in fall/winter before and after 3 weeks of placebo-controlled BLT, as well as in spring/summer. Cerebral MAO-A distribution volume (VT, an index of MAO-A density) did not differ between patients and HC at any of the three time-points. However, MAO-A VT decreased from fall/winter to spring/summer in the HC group (F1, 187.84=4.79, p<0.050), while SAD showed no change. In addition, BLT, but not placebo, resulted in a significant reduction in MAO-A VT (F1, 208.92=25.96, p<0.001). This is the first study to demonstrate an influence of BLT on human cerebral MAO-A levels in vivo. Furthermore, we show that SAD may lack seasonal dynamics in brain MAO-A levels. The lack of a cross-sectional difference between patients and HC, in contrast to studies in non-seasonal depression, may be due to the milder symptoms typically shown by patients with SAD.(VLID)462643
    corecore