13 research outputs found

    A DFT study of 2-aminopurine-containing dinucleotides: prediction of stacked conformations with B-DNA structure

    Get PDF
    This work was supported by studentship funding from the Engineering and Physical Sciences Research Council Doctoral Training Account to DAS and LFH (EP/K503162/1); EaStCHEM, University of Edinburgh and University of St Andrews; University of Melbourne.The fluorescence properties of dinucleotides incorporating 2-aminopurine (2AP) suggest that the simplest oligonucleotides adopt conformations similar to those found in duplex DNA. However, there is a lack of structural data for these systems. We report a density functional theory (DFT) study of the structures of 2AP-containing dinucleotides (deoxydinucleoside monophosphates), including full geometry optimisation of the sugar-phosphate backbone. Our DFT calculations employ the M06-2X functional for reliable treatment of dispersion interactions and include implicit aqueous solvation. Dinucleotides with 2AP in the 5’-position and each of the natural bases in the 3’-position are examined, together with the analogous 5’- adenine-containing systems. Computed structures are compared in detail with typical B-DNA base-step parameters, backbone torsional angles and sugar pucker, derived from crystallographic data. We find that 2AP-containing dinucleotides adopt structures that closely conform to B-DNA in all characteristic parameters. The structures of 2AP-containing dinucleotides closely resemble those of their adenine-containing counterparts, demonstrating the fidelity of 2AP as a mimic of the natural base. As a first step towards exploring the conformational heterogeneity of dinucleotides, we also characterise an imperfectly stacked conformation and one in which the bases are completely unstacked.PostprintPeer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients

    Get PDF
    Aging and neurodegenerative disease predispose to delirium and are both associated with increased activity of the innate immune system resulting in an imbalance between pro- and anti-inflammatory mediators in the brain. We examined whether hip fracture patients who develop postoperative delirium have altered levels of inflammatory mediators in cerebrospinal fluid (CSF) prior to surgery. Patients were 75 years and older and admitted for surgical repair of an acute hip fracture. CSF samples were collected preoperatively. In an exploratory study, we measured 42 cytokines and chemokines by multiplex analysis. We compared CSF levels between patients with and without postoperative delirium and examined the association between CSF cytokine levels and delirium severity. Delirium was diagnosed with the Confusion Assessment Method; severity of delirium was measured with the Delirium Rating Scale Revised-98. Mann-Whitney U tests or Student t-tests were used for between-group comparisons and the Spearman correlation coefficient was used for correlation analyses. Sixty-one patients were included, of whom 23 patients (37.7%) developed postsurgical delirium. Concentrations of Fms-like tyrosine kinase-3 (P=0.021), Interleukin-1 receptor antagonist (P=0.032) and Interleukin-6 (P=0.005) were significantly lower in patients who developed delirium postoperatively. Our findings fit the hypothesis that delirium after surgery results from a dysfunctional neuroinflammatory response: stressing the role of reduced levels of anti-inflammatory mediators in this process. The Effect of Taurine on Morbidity and Mortality in the Elderly Hip Fracture Patient.Registration number: NCT00497978. Local ethical protocol number: NL16222.094.0

    Stacking of the mutagenic DNA base analog 5-bromouracil

    No full text
    The potential energy surface of the stacked 5-bromouracil/uracil (BrU/U) dimer has been investigated in the gas phase and in solution (water and 1,4-dioxane), modeled by a continuum solvent using the polarizable continuum model. Minima and transition states were optimized using DFT (the M06-2X density functional and the 6-31+G(d) basis set). Six stacked gas-phase BrU/U minima were located: four in the face-to-back orientation and two face-to-face. The global minimum in the gas phase is a face-to-face structure with a twist angle of 60A degrees and a zero-point energy-corrected interaction energy of -10.7 kcal/mol. The BrU/U potential energy surface is geometrically and energetically similar to that of U/U (Hunter and Van Mourik in J Comput Chem 33:2161, 2012). Energy calculations were also performed on experimental geometries of stacked dimers (47 containing BrU stacking with either adenine, cytosine, guanine or thymine and 51 containing thymine also stacking with one of those four bases) taken from DNA structures in the Protein Data Bank. Single-point interaction energies were computed at different levels of theory including MP2, CCSD(T) and DFT using the mPW2PLYP-D double-hybrid functional augmented with an empirical dispersion term, using basis sets ranging from aug-cc-pVDZ to aug-cc-pVQZ. No strong evidence was found for the suggestion that the mutagenicity of BrU is due to enhanced stacking of BrU compared to the corresponding stacked dimers involving thymine.</p

    Stacking of the mutagenic DNA base analog 5-bromouracil

    No full text
    The potential energy surface of the stacked 5-bromouracil/uracil (BrU/U) dimer has been investigated in the gas phase and in solution (water and 1,4-dioxane), modeled by a continuum solvent using the polarizable continuum model. Minima and transition states were optimized using DFT (the M06-2X density functional and the 6-31+G(d) basis set). Six stacked gas-phase BrU/U minima were located: four in the face-to-back orientation and two face-to-face. The global minimum in the gas phase is a face-to-face structure with a twist angle of 60A degrees and a zero-point energy-corrected interaction energy of -10.7 kcal/mol. The BrU/U potential energy surface is geometrically and energetically similar to that of U/U (Hunter and Van Mourik in J Comput Chem 33:2161, 2012). Energy calculations were also performed on experimental geometries of stacked dimers (47 containing BrU stacking with either adenine, cytosine, guanine or thymine and 51 containing thymine also stacking with one of those four bases) taken from DNA structures in the Protein Data Bank. Single-point interaction energies were computed at different levels of theory including MP2, CCSD(T) and DFT using the mPW2PLYP-D double-hybrid functional augmented with an empirical dispersion term, using basis sets ranging from aug-cc-pVDZ to aug-cc-pVQZ. No strong evidence was found for the suggestion that the mutagenicity of BrU is due to enhanced stacking of BrU compared to the corresponding stacked dimers involving thymine.</p

    Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers

    No full text
    B3LYP/6-31+G(d) and MP2/6-31+G(d) calculations predict markedly different structures for one Tyr-Gly conformer. Calculation of the energy profile for rotation around the glycine C-alpha-N bond reveals one minimum in the B3LYP profile (phi(gly) = 180 degrees) and two in the MP2 profile (similar to 75 degrees and 280 degrees). Large intramolecular BSSE values are responsible for masking the 180 degrees-minimum in the MP2 profile: approximate elimination of BSSE in the MP2 calculations - by (1) correction using BSSE values from complexes of phenol and N-formylglycine, (2) the application of local MP2, or (3) employing large basis sets (aug-cc-pVTZ/QZ) and density fitting - yields an unambiguous triple-well potential. (C) 2007 Elsevier B.V. All rights reserved.</p
    corecore