13 research outputs found

    Test-retest reliability of evoked heat stimulation bold functional magnetic resonance imaging

    Full text link
    To date, the blood oxygenated-level dependent (BOLD) functional magnetic resonance imaging (fMRI) technique has enabled an objective and deeper understanding of pain processing mechanisms embedded within the human central nervous system (CNS). In order to further comprehend the benefits and limitations of BOLD fMRI in the context of pain as well as the corresponding subjective pain ratings, we evaluated the univariate response, test-retest reliability and confidence intervals (CIs) at the 95% level of both data types collected during evoked stimulation of 40°C (non-noxious), 44°C (mildly noxious) and a subject-specific temperature eliciting a 7/10 pain rating. The test-retest reliability between two scanning sessions was determined by calculating group-level interclass correlation coefficients and at the single-subject level. Across the three stimuli, we initially observed a graded response of increasing magnitude for both visual analogue scale (VAS) pain ratings and fMRI data. Test-retest reliability was observed to be highest for VAS pain ratings obtained during the 7/10 pain stimulation (intraclass correlation coefficient (ICC) = 0.938), while ICC values of pain fMRI data for a distribution of CNS structures ranged from 0.5 to 0.859 (p < 0.05). Importantly, the upper and lower CI bounds reported herein could be utilized in subsequent trials involving healthy volunteers to hypothesize the magnitude of effect required to overcome inherent variability of either VAS pain ratings or BOLD responses evoked during innocuous or noxious thermal stimulation

    Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine

    Get PDF
    Pain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification

    Evidence of Chronic Complement Activation in Asymptomatic Pediatric Brain Injury Patients: A Pilot Study

    No full text
    Physical insult from a mild Traumatic Brain Injury (mTBI) leads to changes in blood flow in the brain and measurable changes in white matter, suggesting a physiological basis for chronic symptom presentation. Post-traumatic headache (PTH) is frequently reported by persons after an mTBI that may persist beyond the acute period (>3 months). It remains unclear whether ongoing inflammation may contribute to the clinical trajectory of PTH. We recruited a cohort of pediatric subjects with PTH who had an acute or a persistent clinical trajectory, each around the 3-month post-injury time point, as well as a group of age and sex-matched healthy controls. We collected salivary markers of mRNA expression as well as brain imaging and psychological testing. The persistent PTH group showed the highest levels of psychological burden and pain symptom reporting. Our data suggest that the acute and persistent PTH cohort had elevated levels of complement factors relative to healthy controls. The greatest change in mRNA expression was found in the acute-PTH cohort wherein the complement cascade and markers of vascular health showed a prominent role for C1Q in PTH pathophysiology. These findings (1) underscore a prolonged engagement of what is normally a healthy response and (2) show that a persistent PTH symptom trajectory may parallel a poorly regulated inflammatory response

    Pain Phenotypes in Rare Musculoskeletal and Neuromuscular Diseases

    No full text
    For patients diagnosed with a rare musculoskeletal or neuromuscular disease, pain may transition from acute to chronic; the latter yielding additional challenges for both patients and care providers. We assessed the present understanding of pain across a set of ten rare, noninfectious, noncancerous disorders; Osteogenesis Imperfecta, Ehlers-Danlos Syndrome, Achondroplasia, Fibrodysplasia Ossificans Progressiva, Fibrous Dysplasia/McCune-Albright Syndrome, Complex Regional Pain Syndrome, Duchenne Muscular Dystrophy, Infantile- and Late-Onset Pompe disease, Charcot-Marie-Tooth Disease, and Amyotrophic Lateral Sclerosis. Through the integration of natural history, cross-sectional, retrospective, clinical trials, & case studies we described pathologic and genetic factors, pain sources, phenotypes, and lastly, existing therapeutic approaches. We highlight that while rare diseases possess distinct core pathologic features, there are a number of shared pain phenotypes and mechanisms that may be prospectively examined and therapeutically targeted in a parallel manner. Finally, we describe clinical and research approaches that may facilitate more accurate diagnosis, monitoring, and treatment of pain as well as elucidation of the evolving nature of pain phenotypes in rare musculoskeletal or neuromuscular illnesses

    A multidisciplinary assessment of pain in juvenile idiopathic arthritis

    No full text
    INTRODUCTION: Pain is prevalent in juvenile idiopathic arthritis (JIA). Unknowns regarding the biological drivers of pain complicate therapeutic targeting. We employed neuroimaging to define pain-related neurobiological features altered in JIA. METHODS: 16 male and female JIA patients (12.7 ± 2.8 years of age) on active treatment were enrolled, together with age- and sex-matched controls. Patients were assessed using physical examination, clinical questionnaires, musculoskeletal MRI, and structural neuroimaging. In addition, functional magnetic resonance imaging (fMRI) data were collected during the resting-state, hand-motor task performance, and cold stimulation of the hand and knee. RESULTS: Patients with and without pain and with and without inflammation (joint and systemic) were evaluated. Pain severity was associated with more physical stress and poorer cognitive function. Corrected for multiple comparisons, morphological analysis revealed decreased cortical thickness within the insula cortex and a negative correlation between caudate nucleus volume and pain severity. Functional neuroimaging findings suggested alteration within neurocircuitry structures regulating emotional pain processing (anterior insula) in addition to the default-mode and sensorimotor networks. CONCLUSIONS: Patients with JIA may exhibit changes in neurobiological circuits related to pain. These preliminary findings suggest mechanisms by which pain could potentially become dissociated from detectable joint pathology and persist independently of inflammation or treatment status

    Proteomics based markers of clinical pain severity in juvenile idiopathic arthritis

    No full text
    INTRODUCTION: Juvenile idiopathic arthritis (JIA) is a cluster of autoimmune rheumatic diseases occurring in children 16 years of age or less. While it is well-known that pain may be experienced during inflammatory and non-inflammatory states, much remains ambiguous regarding the molecular mechanisms that may drive JIA pain. Thus, in this pilot study, we explored the variability of the serum proteomes in relation to pain severity in a cohort of JIA patients. METHODS: Serum samples from 15 JIA patients (male and female, 12.7 ± 2.8 years of age) were assessed using liquid chromatography/mass spectrometry (LC/MS). Correlation analyses were performed to determine the relationships among protein levels and self-reported clinical pain severity. Additionally, how the expression of pain-associated proteins related to markers of inflammation (Erythrocyte Sedimentation Rate (ESR)) or morphological properties of the central nervous system (subcortical volume and cortical thickness) implicated in JIA were also evaluated. RESULTS: 306 proteins were identified in the JIA cohort of which 14 were significantly (p < 0.05) associated with clinical pain severity. Functional properties of the identified pain-associated proteins included but were not limited to humoral immunity (IGLV3.9), inflammatory response (PRG4) and angiogenesis (ANG). Associations among pain-associated proteins and ESR (IGHV3.9, PRG4, CST3, VWF, ALB), as well as caudate nucleus volume (BTD, AGT, IGHV3.74) and insular cortex thickness (BTD, LGALS3BP) were also observed. CONCLUSIONS: The current proteomic findings suggest both inflammatory- and non-inflammatory mediated mechanisms as potential factors associated with JIA pain. Validation of these preliminary observations using larger patient cohorts and a longitudinal study design may further point to novel serologic markers of pain in JIA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12969-022-00662-1

    Impact of Atomic Oxygen on the Structure of Graphene Formed on Ir(111) and Pt(111)

    No full text
    The effect of atomic oxygen adsorption on the structure and electronic properties of monolayer graphite (MG or graphene) grown on Pt(111) and Ir(111) has been studied using X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and scanning tunneling microscopy. For comparison, the adsorption of atomic oxygen on highly oriented pyrolytic graphite has been studied under the same conditions. Graphene oxidation predominantly occurs through the formation of epoxy groups and causes atomic-scale buckling of the graphene lattice, as evidenced by an sp(2)-to-sp(3) bonding transformation. The different parts of the graphene/metal moire superstructure show different oxidation dynamics, with the initial formation of epoxy groups in the more bonding "pores". Upon 0 adsorption, the nearest C neighbors of epoxy groups get engaged in a stronger bonding with the substrate. As a result, the pores of the graphene mesh become attracted and effectively pinned to the substrate by the 0 atoms. A limited intercalation of oxygen under graphene is also probable. Annealing of the samples after oxygen exposure only partially recovers the original graphene structure and results in the formation of a dense pattern of quasi-periodic, nanometer-sized holes. Both the selective oxidization and the hole formation can be exploited for selective functionalization or tuning of the electronic properties
    corecore