142 research outputs found

    Cluster-induced crater formation

    Full text link
    Using molecular-dynamics simulation, we study the crater volumes induced by energetic impacts (v=1−250v= 1- 250 km/s) of projectiles containing up to N=1000 atoms. We find that for Lennard-Jones bonded material the crater volume depends solely on the total impact energy EE. Above a threshold \Eth, the volume rises linearly with EE. Similar results are obtained for metallic materials. By scaling the impact energy EE to the target cohesive energy UU, the crater volumes become independent of the target material. To a first approximation, the crater volume increases in proportion with the available scaled energy, V=aE/UV=aE/U. The proportionality factor aa is termed the cratering efficiency and assumes values of around 0.5.Comment: 9 page

    Crater formation by fast ions: comparison of experiment with Molecular Dynamics simulations

    Full text link
    An incident fast ion in the electronic stopping regime produces a track of excitations which can lead to particle ejection and cratering. Molecular Dynamics simulations of the evolution of the deposited energy were used to study the resulting crater morphology as a function of the excitation density in a cylindrical track for large angle of incidence with respect to the surface normal. Surprisingly, the overall behavior is shown to be similar to that seen in the experimental data for crater formation in polymers. However, the simulations give greater insight into the cratering process. The threshold for crater formation occurs when the excitation density approaches the cohesive energy density, and a crater rim is formed at about six times that energy density. The crater length scales roughly as the square root of the electronic stopping power, and the crater width and depth seem to saturate for the largest energy densities considered here. The number of ejected particles, the sputtering yield, is shown to be much smaller than simple estimates based on crater size unless the full crater morphology is considered. Therefore, crater size can not easily be used to estimate the sputtering yield.Comment: LaTeX, 7 pages, 5 EPS figures. For related figures/movies, see: http://dirac.ms.virginia.edu/~emb3t/craters/craters.html New version uploaded 5/16/01, with minor text changes + new figure
    • …
    corecore