865 research outputs found

    A Call to Arms: Revisiting Database Design

    Get PDF
    Good database design is crucial to obtain a sound, consistent database, and - in turn - good database design methodologies are the best way to achieve the right design. These methodologies are taught to most Computer Science undergraduates, as part of any Introduction to Database class. They can be considered part of the "canon", and indeed, the overall approach to database design has been unchanged for years. Moreover, none of the major database research assessments identify database design as a strategic research direction. Should we conclude that database design is a solved problem? Our thesis is that database design remains a critical unsolved problem. Hence, it should be the subject of more research. Our starting point is the observation that traditional database design is not used in practice - and if it were used it would result in designs that are not well adapted to current environments. In short, database design has failed to keep up with the times. In this paper, we put forth arguments to support our viewpoint, analyze the root causes of this situation and suggest some avenues of research.Comment: Removed spurious column break. Nothing else was change

    On the Classification of Diagonal Coset Modular Invariants

    Full text link
    We relate in a novel way the modular matrices of GKO diagonal cosets without fixed points to those of WZNW tensor products. Using this we classify all modular invariant partition functions of su(3)kβŠ•su(3)1/su(3)k+1su(3)_k\oplus su(3)_1/su(3)_{k+1} for all positive integer level kk, and su(2)kβŠ•su(2)β„“/su(2)k+β„“su(2)_k\oplus su(2)_\ell/su(2)_{k+\ell} for all kk and infinitely many β„“\ell (in fact, for each kk a positive density of β„“\ell). Of all these classifications, only that for su(2)kβŠ•su(2)1/su(2)k+1su(2)_k\oplus su(2)_1/su(2)_{k+1} had been known. Our lists include many new invariants.Comment: 24 pp (plain tex

    Detection of foot-and-mouth disease virus in milk samples by real-time reverse transcription polymerase chain reaction: Optimisation and evaluation of a high-throughput screening method with potential for disease surveillance

    Get PDF
    This study aimed to evaluate the utility of milk as a non-invasive sample type for the surveillance of foot-and-mouth disease (FMD), a highly contagious viral disease of cloven-hooved animals. Four milking Jersey cows were infected via direct-contact with two non-milking Jersey cows that had been previously inoculated with FMD virus (FMDV: isolate O/UKG/34/2001). Milk and blood were collected throughout the course of infection to compare two high-throughput real-time reverse transcription polymerase chain reaction (rRT-PCR) protocols with different RT-PCR chemistries. Using both methods, FMDV was detected in milk by rRT-PCR one to two days before the presentation of characteristic foot lesions, similar to detection by virus isolation. Furthermore, rRT-PCR detection from milk was extended, up to 28 days post contact (dpc), compared to detection by virus isolation (up to 14 dpc). Additionally, the detection of FMDV in milk by rRT-PCR was possible for 18 days longer than detection by the same method in serum samples. FMDV was also detected with both rRT-PCR methods in milk samples collected during the UK 2007 outbreak. Dilution studies were undertaken using milk from the field and experimentally-infected animals, where for one sample it was possible to detect FMDV at 10 . Based on the peak C values detected in this study, these findings indicate that it could be possible to identify one acutely-infected milking cow in a typical-sized dairy herd (100-1000 individuals) using milk from bulk tanks or milk tankers. These results motivate further studies using milk in FMD-endemic countries for FMD surveillance

    Interacting Preformed Cooper Pairs in Resonant Fermi Gases

    Get PDF
    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, that can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the imbalanced Fermi gas added, new figure and references adde

    A Heuristic Based on the Intrinsic Dimensionality for Reducing the Number of Cyclic DTW Comparisons in Shape Classification and Retrieval Using AESA

    Get PDF
    Cyclic Dynamic Time Warping (CDTW) is a good dissimilarity of shape descriptors of high dimensionality based on contours, but it is computationally expensive. For this reason, to perform recognition tasks, a method to reduce the number of comparisons and avoid an exhaustive search is convenient. The Approximate and Eliminate Search Algorithm (AESA) is a relevant indexing method because of its drastic reduction of comparisons, however, this algorithm requires a metric distance and that is not the case of CDTW. In this paper, we introduce a heuristic based on the intrinsic dimensionality that allows to use CDTW and AESA together in classification and retrieval tasks over these shape descriptors. Experimental results show that, for descriptors of high dimensionality, our proposal is optimal in practice and significantly outperforms an exhaustive search, which is the only alternative for them and CDTW in these tasks

    A Novel Strategy Involved Anti-Oxidative Defense: The Conversion of NADH into NADPH by a Metabolic Network

    Get PDF
    The reduced nicotinamide adenine dinucleotide phosphate (NADPH) is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH), a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC), malic enzyme (ME), malate dehydrogenase (MDH), malate synthase (MS), and isocitrate lyase (ICL) that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK) and the upregulation of pyruvate kinase (PK) ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant

    Bacteriophage Crosstalk: Coordination of Prophage Induction by Trans-Acting Antirepressors

    Get PDF
    Many species of bacteria harbor multiple prophages in their genomes. Prophages often carry genes that confer a selective advantage to the bacterium, typically during host colonization. Prophages can convert to infectious viruses through a process known as induction, which is relevant to the spread of bacterial virulence genes. The paradigm of prophage induction, as set by the phage Lambda model, sees the process initiated by the RecA-stimulated self-proteolysis of the phage repressor. Here we show that a large family of lambdoid prophages found in Salmonella genomes employs an alternative induction strategy. The repressors of these phages are not cleaved upon induction; rather, they are inactivated by the binding of small antirepressor proteins. Formation of the complex causes the repressor to dissociate from DNA. The antirepressor genes lie outside the immunity region and are under direct control of the LexA repressor, thus plugging prophage induction directly into the SOS response. GfoA and GfhA, the antirepressors of Salmonella prophages Gifsy-1 and Gifsy-3, each target both of these phages' repressors, GfoR and GfhR, even though the latter proteins recognize different operator sites and the two phages are heteroimmune. In contrast, the Gifsy-2 phage repressor, GtgR, is insensitive to GfoA and GfhA, but is inactivated by an antirepressor from the unrelated Fels-1 prophage (FsoA). This response is all the more surprising as FsoA is under the control of the Fels-1 repressor, not LexA, and plays no apparent role in Fels-1 induction, which occurs via a Lambda CI-like repressor cleavage mechanism. The ability of antirepressors to recognize non-cognate repressors allows coordination of induction of multiple prophages in polylysogenic strains. Identification of non-cleavable gfoR/gtgR homologues in a large variety of bacterial genomes (including most Escherichia coli genomes in the DNA database) suggests that antirepression-mediated induction is far more common than previously recognized

    Genes to Diseases (G2D) Computational Method to Identify Asthma Candidate Genes

    Get PDF
    Asthma is a complex trait for which different strategies have been used to identify its environmental and genetic predisposing factors. Here, we describe a novel methodological approach to select candidate genes for asthma genetic association studies. In this regard, the Genes to Diseases (G2D) computational tool has been used in combination with a genome-wide scan performed in a sub-sample of the Saguenayβˆ’Lac-St-Jean (SLSJ) asthmatic familial collection (nβ€Š=β€Š609) to identify candidate genes located in two suggestive loci shown to be linked with asthma (6q26) and atopy (10q26.3), and presenting differential parent-of-origin effects. This approach combined gene selection based on the G2D data mining analysis of the bibliographic and protein public databases, or according to the genes already known to be associated with the same or a similar phenotype. Ten genes (LPA, NOX3, SNX9, VIL2, VIP, ADAM8, DOCK1, FANK1, GPR123 and PTPRE) were selected for a subsequent association study performed in a large SLSJ sample (nβ€Š=β€Š1167) of individuals tested for asthma and atopy related phenotypes. Single nucleotide polymorphisms (nβ€Š=β€Š91) within the candidate genes were genotyped and analysed using a family-based association test. The results suggest a protective association to allergic asthma for PTPRE rs7081735 in the SLSJ sample (pβ€Š=β€Š0.000463; corrected pβ€Š=β€Š0.0478). This association has not been replicated in the Childhood Asthma Management Program (CAMP) cohort. Sequencing of the regions around rs7081735 revealed additional polymorphisms, but additional genotyping did not yield new associations. These results demonstrate that the G2D tool can be useful in the selection of candidate genes located in chromosomal regions linked to a complex trait

    Regulation of Mycobacterium-Specific Mononuclear Cell Responses by 25-Hydroxyvitamin D3

    Get PDF
    The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), has been shown to be an important regulator of innate and adaptive immune function. In addition, synthesis of 1,25(OH)2D3 from 25-hydroxyvitamin D3 (25(OH)D3) by the enzyme 1Ξ±-hydroxylase in monocytes upon activation by TLR signaling has been found to regulate innate immune responses of monocytes in an intracrine fashion. In this study we wanted to determine what cells expressed 1Ξ±-hydroxylase in stimulated peripheral blood mononuclear cell (PBMC) cultures and if conversion of 25(OH)D3 to 1,25(OH)2D3 in PBMC cultures regulated antigen-specific immune responses. Initially, we found that stimulation of PBMCs from animals vaccinated with Mycobacterium bovis (M. bovis) BCG with purified protein derivative of M. bovis (M. bovis PPD) induced 1Ξ±-hydroxylase gene expression and that treatment with a physiological concentration of 25(OH)D3 down-regulated IFN-Ξ³ and IL-17F gene expression. Next, we stimulated PBMCs from M. bovis BCG-vaccinated and non-vaccinated cattle with M. bovis PPD and sorted them by FACS according to surface markers for monocytes/macrophages (CD14), B cells (IgM), and T cells (CD3). Sorting the PBMCs revealed that 1Ξ±-hydroxylase expression was induced in the monocytes and B cells, but not in the T cells. Furthermore, treatment of stimulated PBMCs with 25(OH)D3 down-regulated antigen-specific IFN-Ξ³ and IL-17F responses in the T cells, even though 1Ξ±-hydroxylase expression was not induced in the T cells. Based on evidence of no T cell 1Ξ±-hydroxylase we hypothesize that activated monocytes and B cells synthesize 1,25(OH)2D3 and that 1,25(OH)2D3 down-regulates antigen-specific expression of IFN-Ξ³ and IL-17F in T cells in a paracrine fashion

    Open Problems on Central Simple Algebras

    Full text link
    We provide a survey of past research and a list of open problems regarding central simple algebras and the Brauer group over a field, intended both for experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered, compared to v
    • …
    corecore