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1. INTRODUCTION
Good database design is crucial to obtain a sound,

consistent database, and— in turn— good database
design methodologies are the best way to achieve
the right design. These methodologies are taught
to most Computer Science undergraduates, as part
of any Introduction to Database class [33]. They
can be considered part of the “canon”, and indeed,
the overall approach to database design has been
unchanged for years. Moreover, none of the ma-
jor database research assessments identify database
design as a strategic research direction [1, 2, 8].
Should we conclude that database design is a solved

problem?
Our thesis is that database design remains a crit-

ical unsolved problem. Hence, it should be the sub-
ject of more research. Our starting point is the
observation that traditional database design is not
used in practice — and if it were used it would result
in designs that are not well adapted to current en-
vironments [5]. In short, database design has failed
to keep up with the times. In this paper, we put
forth arguments to support our viewpoint, analyze
the root causes of this situation and suggest some
avenues of research. The point of view espoused
here has been put forth more or less explicitly in
other places (see [18] for a recent and notable exam-
ple); but here we put together several strands that
have received isolated attention, and focus them on
an issue that we feel is particularly important —
database design.
In the next section (§ 2), we sketch the tradi-

tional database design process: we argue that it
manages to be, at the same time, over-engineered
and under-engineered. The contradiction is only ap-
parent: as any complex problem, this one is multi-
faceted. Traditional design does too little with re-
spect to some areas and too much with respect to
others. In § 3, we analyze the causes of the prob-
lems presented in § 2. We then briefly the current
status of research on database design (§ 4). Finally,

we present some ideas for a research renewal in § 5.

2. TRADITIONAL MODELING
Relational modeling is usually broken down into

three steps:

• Conceptual modeling, which includes re-
quirement gathering and specification, and re-
sults in a conceptual model of the database.
At this stage, the designer focuses on issues of
scope — what belongs in the database? — and
organization — how is the information to be
structured? Entity-relationship diagrams [15]
and UML class models are the two best known
conceptual models, but not the only ones; al-
ternatives like Object Role Modeling have been
proposed [29].

• Logical modeling, which takes as input the
conceptual model produced in the previous step
and yields a database schema. This step is well
developed [60]. Normalization enforces func-
tional dependencies by removing redundancy.

• Physical modeling, which takes as input the
database schema produced in the previous step
and produces storage structures to implement
the schema in computer systems. It can be
automated to a large extent [13, 24].

Each step focuses on only one aspect of the prob-
lem which helps tame the complexity. Also, each
step produces an output that feeds into the next
step, creating a linear structure that is easy to fol-
low.

2.1 Problems with the traditional approach
The problem of database design is difficult, and

it encompasses issues that may not be amenable
to formalization [52]. Hence, any method is likely
to have some limitations and drawbacks. However,
this is not a reason to ignore the serious problems
that the traditional approach is running into. Here
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we summarize what we see, from our experience and
perspective, as the most troublesome issues.

2.1.1 Failures of use and guidance

We claim that the traditional approach is not fol-
lowed in practice. Indeed, Fitzgerald et al. [23]
found that only about 11% of the consulted or-
ganizations claimed using an unmodified commer-
cial information system methodology. Furthermore,
Brodie and Liu [11] report that while 90% of all in-
formation systems inside a Fortune 100 company
are relational, they could not find a single instance
of an entity-relationship modeling in over ten such
large corporations. The lack of modeling is not due
to the lack of complexity: they report that a typ-
ical Fortune 100 company has about 10 thousand
different information systems, that a typical rela-
tional database is made of over 100 tables, each con-
taining between 50 to 200 attributes. Formalized
conceptual models, as well as the theory developed
around normalization, are not used. Physical mod-
eling is frequently delayed until performance prob-
lems arise. In a very real way, we have entered a
post-methodological era as far as the design of in-
formation systems is concerned [5]. The emergence
of the Web has coincided with the death of the dom-
inant methods based on the analytic thought and
lead to the emergence of sense-making as a primary
paradigm.
If one agrees that the traditional method is not

used, the obvious question is: Why? Why do practi-
tioners dismiss a method that has a solid theoretical
basis and is the distillation of years of thought? It
would be easy (and tempting!) to blame the design-
ers or their training. But the tools themselves share
a good part of the blame. They fail to give what
designers need most, guidance as to how to apply
them: for conceptual models, not enough guidance
is given as how to create one, how to assess its qual-
ity, and — importantly — how to handle all infor-
mation that does not fit into the conceptual model
but may be relevant later for data quality of other
purposes.
A critical failure in the traditional approach is

that there is little guidance on how to discover im-
portant information (e.g., functional dependencies)
in the real world. It would not be a concern if the
rest of the design assumed that we lacked informa-
tion. Yet unless we have all functional dependen-
cies, there is no guarantee of normal form in the log-
ical design. Thus, the logical design phase is brittle.
Ironically, the step where most research has fo-

cused on giving guidance is the last one, physical
design [13], perhaps because it is easier to simu-

late realistically the problems and their solutions
in a laboratory. However, this third step relies on
the previous ones; while it can sometimes result in
modifications of the database schema — as when
denormalization is recommended, most approaches
still assume that a schema has been well designed.
By analogy, we could say that we know how to build
the walls, as long as the foundation of the house is,
somehow, done properly.

2.1.2 Failures of imagination

Even if one were to follow the steps of the tradi-
tional design method, and have a perfectly normal-
ized, by-the-book database, what does one obtain?
We consider database design a matter of seman-

tics: we are trying to capture the semantics of a do-
main, to represent information about that domain
faithfully, and to (only) allow operations with the
data that are meaningful. But traditional database
design focuses on structure. In exchange for all the
effort, we have insufficient semantics. This is the
sense in which databases are under-engineered.
Consider, for instance, the problem of informa-

tion integration [20, 54, 63]. Relational databases
fail to provide enough information to determine au-
tomatically whether two databases contain informa-
tion about distinct, overlapping, or similar domains.
And yet, integration of information is increasingly
critical: 40% of the cost associated with information
systems is due to data integration problems [11]. To
exemplify this trend toward greater integration and
collaboration even in the most conservative settings,
consider that the 9/11 Commission report urged
the intelligence community to move from its need-
to-know standard to a need-to-share approach [35].
Experts believe that the 9/11 tragedy could have
been avoided with better data integration. The tra-
ditional way to design databases does not capture
enough information to enable information integra-
tion — in fact, it falls short of capturing precisely
the kind of information that would be more valuable
for integration. Hence, traditional design not only
fails to alleviate the problem, it is helping to per-
petuate it. Most data integration approaches start
by trying to determine the similarity between at-
tributes.1 Since most design approaches treat at-
tributes as barely more than labels, one has usually
only a string to work with: information about at-
1Several approaches rely on statistical properties of
data, and choose not to try to interpret it [36]. It is un-
clear whether this is done in search of generality or due
to need; but we believe that, while this approach pro-
vides important information, statistical properties can-
not establish semantic similarity by themselves—but see
Halevy et al. [28] for a different viewpoint.



tributes (metadata) is usually absent [53]. As long
as design focuses on how to structure attributes in
tables and not in what attributes mean, the prob-
lem will be with us. In the end, we ask practitioners
to follow a model that is demanding and yields, in
return, some very limited results.
The lack of appropriate metadata is even more

acute in new applications, ranging from financial to
legal systems. A prominent example is e-science:
scientists need not only to store larger and larger
amounts of data. They also need to be able to assess
provenance [57], access rights, workflows, etc. in
order to comply with ever increasing regulations, to
be able to share the data, and to achieve the goal
of reproducible research [58]. On this, traditional
design offers no guidance.
To make matters worse, the focus on structure

creates rigidity. Kiely and Fitzgerald [37] found
that traditional information systems development
methods were sometimes perceived to be of lim-
ited use within modern projects because they are
too cumbersome and inflexible. This is the sense in
which databases may be considered over-engineered.
Consider the NoSQL movement [40]. A large force
behind it are programmers for which database de-
sign makes no sense. Tired of the rigid structure
of relational databases, other systems (Raven DB,2

Amazon’s SimpleDB,3 Apache’s CouchDB,4 Mon-
goDB5) are emerging. What good is it to design if it
fails to make the developers more productive? Un-
fortunately, the mismatch between objects and pro-
gram structures on one hand, and database struc-
tures on the other, is still largely unresolved. Mo-
tivated by this problem, Microsoft has proposed the
Language-IntegratedQuery (LINQ) framework [44].
Other initiatives to bridge the gap have been devel-
oped over the years — witness to the fact that the
problem is still with us.

3. WHY DOES IT FAIL?
The traditional design method was developed in

the early seventies, when mainframes dominated in-
formation technology. It is in this era that the rela-
tional [17] and entity-relationship models [15] were
invented. Accordingly, there are several assump-
tions behind the traditional design which reflect its
age:
• Users are faceless objects for whom (or on whose
behalf) the systems are designed [31].6 In the seven-

2http://ravendb.net
3http://aws.amazon.com/simpledb/
4http://couchdb.apache.org/
5http://www.mongodb.org/
6In the quote sometimes attributed to Frederick the

ties, the management of data was left in the hands
of few experts who served the needs of technolog-
ically unsophisticated employees. Nowadays, the
boundaries between users, whether they are employ-
ees or clients, and developers are blurred [46]. This
is best illustrated with how hashtags emerged on
the microblogging platform Twitter. Hashtags are
a metadata convention among Twitter users [39],
in the spirit of folksonomies [55]. Yet Twitter it-
self had no support for metadata. We can trace
back the current convention to a single user who
informally proposed it in a 140-character post in
August 2007. Later, Twitter engineers recognized
the convention and added software support for it.
For example, Twitter detects “trending topics” us-
ing popular hashtags. A few other conventions, like
the “retweet”were first initiated by the users. Sun-
dara Nagarajan has recently expressed the same
idea [48]: “Empowered end users cause application
systems to evolve at tremendous speeds and con-
tinuously create new requirements for interopera-
tion. For instance, a social networking site user can
add content and pointers from a website, by simply
dragging and dropping. The evolution of mashups
that combine data and functionality from multi-
ple sources is another example of this new design
paradigm. This is leading to the evolution of the
user experience, along with computation and data
management.” When systems are designed without
the users, a lack of user engagement may result:
93% of all accounts in Business Intelligence systems
are never used [45].
• The information system is strongly consistent. It
has been estimated that Google alone has more than
1 million servers. Using cloud computing, anyone
can use a distributed network of servers at a modest
cost. With multiply located servers and deeply inte-
grated web services, the CAP theorem [25] implies
in practice that we have to choose between strong
consistency and strong availability: we cannot have
both. As a possible illustration of this constraint,
the recent failure of an Oracle database at JPMor-
gan Chase, which froze $132 million in assets and
lost thousands of loan applications, was blamed on
an database [47] which required strong consistency
for all data.
• Semantics is absolute. The original design as-
sumed a centralized architecture. This architectural
assumption had a reflection on the conceptual level,
where one main viewpoint was assumed. While se-
mantic relativism is pointed out [21, 51, 56], a choice
must be made for a single model: there is no mech-

Great, it’s “everything for the people, but without the
people”.



anisms to derive other. Yet when different systems
must interact routinely, we cannot expect that they
all share the same viewpoint.
• The models are static. In the traditional setting,
there is little need for evolution. Yet databases,
even in large conventional corporations, are fast evolv-
ing: 30% of all information systems are modified
significantly every year [11] in Fortune 100 com-
panies. Chen, the father of the entity-relationship
model, recently recognized the difficulty by pointing
out the inability of existing modeling techniques to
cope with fast-varying world states [16].

4. WHAT NOW?
Despite these difficulties, research on database de-

sign has failed to make major progress in the last
ten years or so. This is not to say that no research
is done. For instance, the series of conferences on
entity-relationship modeling [50], while not totally
focused on design issues, devote most of the pro-
gram to them. Theoretical work is still ongoing
in logical modeling [38]. Physical design research
is still strong, sometimes driven by database ven-
dors [3]. And there is still a community of dedi-
cated researchers including notable researchers like
Thalheim [61] and Olivé [49] among others.
But overall the topic is not widely pursued. For

instance, if one checks the last 10 years of the “ma-
jor”database conferences (SIGMOD, VLDB, ICDE),
the number of papers in database design is low:
leaving aside physical design (that is, the fine tun-
ing of storage structures for better performance), we
found less than ten talks mainly about database de-
sign [4, 9, 26, 34, 41, 42, 58, 62] and most of them
examine design issues within the confines of a re-
stricted context (sensor databases [41, 42], XML
schema evolution [9], user interaction [62], scien-
tific databases [58], data warehousing [34]).7 There

7We do not claim any statistical validity for this ob-
servation. For one, the sample used is limited — more
conferences, and certainly some journals, should be in-
cluded. For another, there is a subjective aspect to this
analysis. For the sake of transparency, we explain our
method: first, the web page of each conference, reached
through the web site of the organization behind the con-
ference was used: this gives access to session titles, pa-
per titles and sometimes abstracts. A search was made
for keyword “design”, another for keyword “normal” (to
obtain ’normalization’ and so on), and another for “se-
mantic”. We checked the title and abstract for each
match (the last keyword generated quite a few matches).
As stated, papers on physical design (database tuning
and index design) were excluded. The list of papers ob-
tained is given for interested readers to judge by them-
selves in the references above. Others may reasonably
disagree exactly as to what to include, i.e., how to de-

are certainly papers which, without having design
as their main goal, bring considerable contributions
to the table. For instance, the research on datas-
paces by Halevy et al. [27] has brought forth the
possibility of databases where the schema is im-
plicit or at least not separated from the data and
can evolve with it. It opens up some possibilities,
but no paper on this project is about design per
se. Likewise, research on semistructured data (e.g.,
XML) has exposed the database community to the
thought that design must be more flexible [6]. How-
ever, little of this seems to have percolated to more
traditional (relational, object relational) data mod-
els, and the design methodology for them. Finally,
the total number of contributions remain low, even
including this work, for such a crucial topic.
The fact is, traditional database design is not a

mainstream research topic. We believe that this is
due to two main facts: first, for most researchers,
work on database conceptual models is seen as too
difficult, because the subject is “soft”, not clearly
formalized, and does not yield itself well to the typ-
ical paper that one expects to see published in most
conferences and technical journals. Second, work on
relational design is considered useless as the topic
is commonly taken as basically a mature and closed
one. Certainly, there is always some more work
that can be done (for instance, extending the idea
of key and functional dependence to other models,
like XML, has received some recent attention [14],
as well as extending the concept itself to ’soft’ func-
tional dependencies [32]), but the subject is often
considered “a solved problem”.
On teaching, we note that while some textbooks

are quite good about pointing out to students the
limits and difficulties of the process, others simply
gloss over the issues and give the impression that
this a “case closed” situation — which may con-
tribute to the lack of research in the area.

5. WHAT NEXT?
Traditional database design fails to provide the

tools needed to design databases in today’s envi-
ronment, but researchers have not updated or ex-
panded the methodologies enough to keep up with
the times. Should we continue teaching methodolo-
gies which disappoint practitioners?
A first step towards renewed emphasis on database

design research is to come up with a fresh and timely

fine ’mainly about database design’ (but note that we
include an invited talk and two tutorials!). However,
unless one uses a generous notion of ’database design’,
we believe other people’s results will be in the same or-
der of magnitude as ours.



approach. Different researchers will likely have dif-
ferent viewpoints as to what are the most crucial
or interesting problems. We submit the following
research plan to open up a discussion.

Design for a distributed world.

• We must update database design methodolo-
gies for new environments that did not exist
in the 1970s. Though there were many failed
attempts to replace the ACID-compliant re-
lational database systems with better alterna-
tives, the landscape has finally begun changing
with the adoption of cloud computing. For ex-
ample, the data consistency requirements (and
other issues affecting distribution) should be
made explicit during the design phase, so that
they can be exploited when deciding an archi-
tecture. In fact, many NoSQL designs assume
that most operations can be kept local in or-
der to ensure scalability, which means that one
needs to know which data is likely to be in-
volved in a transaction (logically related) in
order to distribute the data ([59] makes the
same point, implicitly). Along the same lines,
deciding what can be made eventually consis-
tent (versus what needs to be kept consistent
at all times), and what to do in the face of in-
consistency, should be based on the semantics
of data. Hence, such issues should be part of
the design phase.

• It is fashionable to talk about Big Data: one
the main driver being this trend is our ability
to quickly integrate diverse data sets to cre-
ate new services. Correspondingly, easier data
integration should become one of the primary
goals of good database design. Another issue
that Big Data brings is the distributed nature
of the model. Do we need a ’distributed de-
sign’ approach? For instance, should design
produce more or less independent modules or
’chunks’ of connected data, which can in turn
be connected to each other in one or more
ways? How would such a distributed design
relate to Berners-Lee’s linked data [7]? Or per-
haps we should propose methodologies which,
instead of starting from a clean slate, begin
with the existing schemas (both within the or-
ganization, and public ones) and build on top
of them. Should we shift the focus towards
extensions of what there is?

Rethink functional dependencies.

• If Helland is right and normalization is for
sissies ([30]), then one should question the fo-
cus on functional dependencies in database de-
sign. If this idea seems far-fetched, recall that
data warehousing practitioners proposed a dif-
ferent design methodology (the star schema)
that does not use the idea of functional depen-
dency at all (rationalization of star schema in
normal form came after the fact). The ques-
tion then is whether there are other concept
or concepts that can replace ’functional depen-
dence’ and be a good basis for design.

• We know that enforcing functional dependen-
cies in the schema is insufficient to ensure that
the data is semantically consistent. There are
many rules, some expressible as constraints,
assertions, or triggers, that could be enforced
to ensure meaningful data. But current design
mostly ignores this information. Shouldn’t we
attempt to capture this information, which is
most likely to have an impact on the quality
of our data, during the design? (In which case
we need to define a way to measure the impact
of different types of rules in data quality and
consistency.) How can these various rules be
used together in design? Note that to answer
this question one has to answer other, more
basic, questions: how do these different rules
interact?

• Much of the database-design courses focus on
functional dependence and normal form. It is
often implied that the physical design ought
to be a straight-forward application of the log-
ical design. This is because, once, the equa-
tion one relation = one table = one file held
for virtually all relational systems. Yet it not
longer applies. For example, many distributed
or column-oriented database systems replicate
data for speed or reliability. Is it time to com-
pletely separate logical design from physical
design, i.e. consider the relation as a purely
conceptual entity?

Design for imperfect knowledge.

• Wemust cope with incomplete information (about
the domain, the users, etc.) since in real sys-
tems, the scope or boundary of a database, or
its future usage, is often uncertain [43]. Thus,
design should proceed with as few assumptions
as possible. Until now, a certain closed world



assumption mentality trickles all the way from
the conceptual model to the database. Clearly,
we live in an open world. Should be consider
schemas as descriptive instead of prescriptive,
which is what they are now? If so, what to
do with data that does not follow the schema?
Should any such data be allowed? Given the
difficulty of determining in advance the type of
data that the system may have to deal with,
should the design include, for instance, a de-
scription of data that should not be allowed,
and leave the database open to all other data?
To some extend, XML schema languages (e.g.,
XML Schema and Relax NG) seem to adopt
such a permissive attitude, with the added re-
quirement that the data be structured in a hi-
erarchical manner. Unfortunately, our expe-
rience is that the process is burdensome and
is not widely used [10]. Are there lightweight
alternatives?

• In turn, adopting an open world point of view
will make it easier to support collaborative,
evolutionary design as an integrated part of
the workflow [18]. The issue here is, how do we
design databases with open-world model while
insuring the necessary consistency? If we are
going to give permission to users to modify a
schema, how much freedom should users have?
For instance, one could study whether design
can be crowdsourced (and if so, how and un-
der what constraints). In general, one need to
decide what kind of changes can be support,
whether they come from the users or from a
designer. A deeper study of database evolu-
tion could be of help here: could a system be
designed that adapts its storage to changing
schemas and requirements? Physical design
is currently focused on query workload, that
is, it adapts itself to the (changing) require-
ments posed by the database queries. Could
some of these ideas be used to make the sys-
tem reactive to changes in the schema? We
find interesting that functional dependencies
can be (roughly) classified as natural (one that
reflects an invariant in the world: a person has
only one height) or artificial (one that reflects
a convention: each employee has to attend X
meetings a month). The former are quite sta-
ble, but the latter are subject to change (note
that all so-called business rules are artificial!).
Should a system be able to cope with changes
in artificial dependencies (old ones cease to
hold, new ones are added)?

• New data stores in the NoSQL movement use
non-relational data models: key/value, docu-
ments, extensible records [12]. Probably the
first research task for such data models is a
clarification of their exact structure and prop-
erties, since the terms are used somewhat loosely.
But an immediate second is to decide whether
they require a different approach to design (af-
ter all, even NoSQL data stores require de-
sign) or, to the contrary, whether design de-
cisions can be kept independent of the data
model. The question is not as trivial as it may
seem: some of these new models allow an open
schema, that is, one where the user can add
attributes at will, while others still require,
like relational databases, a closed schema, that
is, one where all possible attributes are de-
clared beforehand — yet others, like extensible
records, combine both parts.

• Though there has been much work done on
probabilistic databases [19] and soft functional
dependencies [32], such subjects remain almost
entirely distinct from database design. Yet se-
mantics are not always absolute: some rela-
tionships are merely almost always true. Thus,
it is likely that there are many more soft de-
pendencies or conditional dependencies than
’standard’ functional dependencies. (A condi-
tional dependency is one that holds only under
certain circumstances. For example, at some
places, a married couple is always made of a
man and a woman, but not at others.) Current
design practices tend to ignore all functional
dependencies but the standard ones, which are
but an extreme case [22]. Should we make
room in database-designmethodologies for prob-
abilistic metadata and several types of depen-
dencies? If so, how would different types of
dependencies be used? How would they be-
have when put together?

No doubt, different researchers will have differ-
ent viewpoints on these issues. Some may object
to some of the challenges included here; others may
wish to direct attention to other problems not in-
cluded here. We stress again that this plan is meant
to start the discussion; let the debate begin.
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[31] J. Iivari, H. Isomäki, and S. Pekkola. The user,
the great unknown of systems development:
reasons, forms, challenges, experiences and in-
tellectual contributions of user involvement.
Information Systems Journal, 20(2):109–117,
2010.

[32] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: automatic discovery of
correlations and soft functional dependencies.
In Proceedings of the 2004 ACM SIGMOD in-
ternational conference on Management of data,
SIGMOD ’04, pages 647–658, New York, NY,
USA, 2004. ACM.

[33] J. Impagliazzo. Computing curricula 2005.
ACM SIGCSE Bulletin, 38(3):311–311, 2006.

[34] M. Jarke, C. Quix, D. Calvanese, M. Lenzerini,
E. Franconi, S. Ligoudistianos, P. Vassiliadis,
and Y. Vassiliou. Concept based design of data
warehouses: the DWQ demonstrators. In Pro-
ceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data, SIG-
MOD ’00, pages 591–, New York, NY, USA,
2000. ACM.

[35] C. Jones. Intelligence reform: The logic of in-
formation sharing. Intelligence & National Se-
curity, 22(3):384–401, 2007.

[36] J. Kang and J. Naughton. Schema matching us-
ing interattribute dependencies. IEEE Trans-
actions on Knowledge and Data Engineering,
20(10), October 2008.

[37] G. Kiely and B. Fitzgerald. An investigation of
the use of methods within information systems
development projects. The Electronic Journal
of Information Systems in Developing Coun-
tries, 22, 2005.

[38] S. Kolahi and L. Libkin. An information-
theoretic analysis of worst-case redundancy
in database design. ACM Transactions on
Database Systems, 35:5:1–5:32, February 2008.

[39] H. Kwak, C. Lee, H. Park, and S. Moon. What
is Twitter, a social network or a news media?
In Proceedings of the 19th international con-
ference on World wide web, WWW ’10, pages
591–600, New York, NY, USA, 2010. ACM.

[40] N. Leavitt. Will NoSQL databases live up to
their promise? Computer, 43(2):12–14, 2010.

[41] Q. Luo and H. Wu. System design issues in sen-
sor databases. In Proceedings of the 2007 ACM
SIGMOD international conference on Manage-
ment of data, SIGMOD ’07, pages 1182–1185,
New York, NY, USA, 2007. ACM.

[42] S. Madden, M. J. Franklin, J. M. Hellerstein,
and W. Hong. The design of an acquisitional
query processor for sensor networks. In Pro-
ceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, SIG-
MOD ’03, pages 491–502, New York, NY, USA,
2003. ACM.

[43] M. Magnani and D. Montesi. A survey on un-
certainty management in data integration. J.
Data and Information Quality, 2:5:1–5:33, July
2010.

[44] E. Meijer, B. Beckman, and G. Bierman.
LINQ: reconciling object, relations and XML
in the .NET framework. In Proceedings of the
2006 ACM SIGMOD international conference
on Management of data, SIGMOD ’06, pages
706–706, New York, NY, USA, 2006. ACM.

[45] R. Meredith and P. O’Donnell. A functional
model of social media and its application to
business intelligence. In Proceeding of the 2010
conference on Bridging the Socio-technical Gap
in Decision Support Systems: Challenges for
the Next Decade, pages 129–140, Amsterdam,
The Netherlands, The Netherlands, 2010. IOS
Press.



[46] F. Millerand and K. Baker. Who are the users?
Who are the developers? Webs of users and de-
velopers in the development process of a tech-
nical standard. Information Systems Journal,
20(2):137–161, 2010.

[47] C. Monash. Details of the JPMorgan Chase Or-
acle database outage. http://bit.ly/ckWLfq
[last checked on 10/07/2011], 2010.

[48] S. Nagarajan. Guest editor introduction. Data
Storage Evolution, Special Issue of Computing
Now, March 2011. IEEE Press.
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