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Abstract. Cyclic Dynamic Time Warping (CDTW) is a good dissimilarity of
shape descriptors of high dimensionality based on contours, but it is computation-
ally expensive. For this reason, to perform recognition tasks, a method to reduce
the number of comparisons and avoid an exhaustive search is convenient. The Ap-
proximate and Eliminate Search Algorithm (AESA) is a relevant indexing method
because of its drastic reduction of comparisons, however, this algorithm requires
a metric distance and that is not the case of CDTW. In this paper, we introduce
a heuristic based on the intrinsic dimensionality that allows to use CDTW and
AESA together in classification and retrieval tasks over these shape descriptors.
Experimental results show that, for descriptors of high dimensionality, our pro-
posal is optimal in practice and significantly outperforms an exhaustive search,
which is the only alternative for them and CDTW in these tasks.

Keywords: Cyclic strings, cyclic sequences, cyclic dynamic time warping, shape
classification, shape retrieval, intrinsic dimensionality, metric spaces, AESA.

1 Introduction

Shape classification and retrieval are very important problems with applications in sev-
eral areas such as industry, medicine, biometrics and even entertainment.

Among the methods to solve this problem the ones related to Dynamic Time Warp-
ing (DTW) [1] and descriptors of the contour with sequences of components of several
dimensions have had a significant presence [2–8]. In general, these shape descriptors
aim to have information from all of the contour with respect to each point, that is the
reason for their large size (see Figure 1 for an example of the shape descriptor used
in [6]). These methods offer very competitive results because of their full description
and the properties that DTW has as a dissimilarity (DTW is able to align parts instead of
points and it is robust with elastic deformations). Nevertheless, this combination has a
high computational cost. Besides, the problem of the starting point invariance appears,
i.e., where we have to start the comparison in the sequence. Although there are many
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Fig. 1. Shape context computation. Given a set of landmark points from the contour, for each
point is defined a histogram of the relative coordinates of the remaining points. (a) Diagram of
log-polar histogram bins used in computing the shape contexts. Five bins for log r and 12 bins
for θ, 60 dimensions. (b) Landmark points and the corresponding histogram of the point marked
by a black dot. (c) The same shape but using a different point. (d) Another shape similar to (b).

heuristic methods to obtain this invariance, they are not suitable in most of the domains.
Therefore, the literature accepts that to obtain a good starting point we must make the
comparison between every possible starting point of the sequence [2, 3, 9, 4]. Hence the
necessity to use cyclic sequences and then CDTW (Cyclic DTW) arises.

In [10], an algorithm is proposed to calculate the CDTW in timeO(n2 log n) (being
n the size of the sequences). Although this algorithm considerably reduces the cost,
with the shape descriptors mentioned before, the local distance or dissimilarity [10]
between the components of the sequence has too much weight on the final cost, due to
its dimensionality. Thus, in recognition tasks to use solutions that avoid the computation
of CDTW over all the prototypes of the database is necessary, i.e., to avoid an exhaustive
search.

In [9], the authors, using a method similar to their previous work with DTW [11],
try to speed up the CDTW as well. In this work, they do not use the algorithm of [10],
but they make clusters of sequences based on their similarity, treating every possible
starting point as a different sequence and using indexing methods with lower bounds
of these clusters. This solution seems to be suitable just for shape descriptors with only
one dimension (such as the curvature) and not for much more dimensions [2–8]. For
instance, in [5], 60 dimensions are required for each point (Figure 1). Another problem
is that it cannot use more sophisticated local distances (in CDTW between elements of
the shape descriptors) such as χ2 [6], due to their lower bound.

AESA [12, 13] is characterised by a drastic reduction of the computation of dis-
tances. It is then specially interesting when the distance has a high cost and that is
precisely our case. However, CDTW is not a metric because it does not satisfy the tri-
angular inequality, which is an indispensable property for using AESA. In [14–17], the
authors used AESA to speed up a speech recognition task based on DTW with good
results in spite of not satisfying this property. In the current work, we improve their
heuristic adding an important factor: the intrinsic dimensionality [18]. As far as we
know the heuristic presented here is the only alternative to an exhaustive search in the
context of shape classification and retrieval with cyclic sequences of high dimensional-
ity.
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The paper is organized as follows: The next section describes how the intrinsic di-
mensionality is affected in the search of nearest neighbours. In Section 3, the triangular
inequality is related to the intrinsic dimensionality and how we can use AESA due to
this relation is explained, that is to say, we present our heuristic. In Section 4, we show
experiments to validate our proposal. Finally, conclusions are formulated in Section 5.

2 On the Intrinsic Dimensionality and Nearest Neighbours

Indexing methods based on metrics do not necessarily work with all databases and all
metrics. Their efficiency is affected by the distribution of distances of the database.
From this distribution we can obtain the intrinsic dimensionality. According to [18],
given a database D and a metric m, the intrinsic dimensionality, %, is: %(D,m) = µ2

2σ2 ,
where µ and σ2 are the mean and the variance of the distribution of distances.

In [18], it is shown, in an analytical and experimental way, that all the algorithms
based on metrics degrade in a systematic way as the dimensionality increases, i.e., the
computational cost is getting close to the one of an exhaustive search.

We can observe that the intrinsic dimensionality increases because of the two next
reasons: the variance decreases and/or the mean of the distribution of distances in-
creases. In Figure 2, we can see two distributions of distances showing a low and high
intrinsic dimensionality. Two extreme cases, where both variance and mean vary. If the
variance decreases, it means that the most distances have similar value, then we are
going to have less information for pruning (in the case of AESA, bounds are going to
be worse). On the other hand, if the mean increases, to obtain the nearest neighbours
we will have to explore more prototypes (in AESA, we will take more time to find a
prototype for a good pruning).

But, in our problem, what determines the distribution of distances?, i.e., what pro-
vokes that % increases?. We can consider two causes. One is the sequence or the shape
descriptor, especially affecting the number of points and the number of dimensions for
each point. For instance, the BAS descriptor [2] uses 4 dimensions for each point and
the shape contexts [5] 60 dimensions for each point. The second cause is the distance
for comparing the sequences. Even though, if we set as the distance the CDTW, the
local distance gains importance, which for the BAS descriptor is the euclidean distance
and for the shape contexts is χ2 [5].
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Distances
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Fig. 2. Synthetic example of two distributions of distances. (a) With a low intrinsic dimensional-
ity. (b) With a high intrinsic dimensionality.



4

3 Improving the Heuristic with the Intrinsic Dimensionality

The only problematic property for DTW to be a metric, is the triangular inequality:

d(x, z) ≤ d(x, y) + d(y, z),

since it is possible to find counterexamples where DTW does not satisfy it [14, 19] (thus,
CDTW is not a metric either). The correction of algorithms such as AESA (Figure 3)
depends on having a metric distance and then it has to satisfy this property.

In [14–17], a study was performed with a task of speech recognition with isolated
words using DTW. They aimed to see how not to satisfy the triangular inequality by
DTW affected in samples of the real world. These samples were speech frames that were
represented by sequences of components of eight dimensions. In [15], in 15 millions of
triplets there were no cases where the triangular inequality was violated. In [19], the
authors made experiments with synthetic time series (sequences of one dimension) of
three types: white-noise, random-walk and cylinder-bell-funnel. The most problematic
was random-walk where 20% of triplets violated the triangular inequality.

To see how many triplets x, y, z violate the triangular inequality we can use the next
formula:

H = d(x, y) + d(y, z)− d(x, z). (1)

All the triplets that have an H less than zero do not satisfy the triangular inequality.
In [14], distributions (or histograms) of the frequencies of triplets for eachH are shown.
These distributions seem to have a gaussian form and whenH = 0 the frequency is very
low.

In (1), we can observe that the distribution of H has a relation to the distribution
of distances (Section 2). That is to say, H is a composition of three random variables
with the same distribution (the distribution of distances). The greater the mean, µ, of
the distribution of distances, the greater the value of H of most of triplets, therefore,
there will be more positive values because we will be adding two distances of the same
distribution and subtracting another one of the same distribution too. In the case of the
variance, σ2, a similar thing will happen but with a lower variance, since the distances
will be similar, and then, there will be more values ofH that are greater or equal to zero.
Therefore, we can say that, when the intrinsic dimensionality, %, is greater, we will very
probably find a lower number of triplets, x, y, z, that violate the triangular inequality.
In practice, and in the case of CDTW, this statement shows that it will be easier to find
triplets that violate triangular inequality in sets of sequences whose components have
one dimension, like the curvature descriptor, than in sequences with 60 dimensions,
like the shape contexts descriptor [5]. Thus, we can apply AESA with greater chances
of success the greater the dimensionality of our cyclic sequences.

In our experiments with real world data (Section 4) we obtained few cases that
violate the triangular inequality. However, in the curvature descriptor it arrives to almost
a 3%. For the other types of descriptor the amount is very low as we expected and,
given the characteristics of AESA (Figure 3), the recognition rates are not going to be
significantly affected in practice. The fact that the intrinsic dimensionality increases is
good for the triangular inequality but not for AESA, since it degrades the search [18],
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as we mentioned before. Even so, as we will see in the next section the results are
satisfactory both in time and in classification and retrieval rates.

Fig. 3. AESA. In our case the distance d is the CDTW.
Input: P : prototypes, x: sample to classify, D ∈ R|P |×|P |: distances between prototypes
Output: nn ∈ P : nearest neighbour
begin

for p ∈ P do
G[p] = 0

nn = unknown; dnn =∞; s = any element from P
while |P | > 0 do

ds = d(x, s); P = P − s
if ds < dnn then

nn = s; dnn = ds
next = unknown; gmin =∞
for p ∈ P do

G[p] = max(G[p], |D[s, p]− ds|) // lower bound based on the
// triangular inequality

if G[p] > dnn then
P = P − p

else
if G[p] < gmin then

gmin = G[p]; next = p

s = next

end

4 Experiments

In order to assess the behaviour of our proposal, we performed experiments on an In-
tel i7 2.66GHz machine running under linux 3.2.0. The real world databases used were
the MPEG-7 Core Experiment CE-Shape-1 (part B) [20] and the Silhouette database [21].
The shape descriptors were: curvature (as an example descriptor of one dimension for
each point), BAS [2] (four dimensiones) and the shape contexts (SC) [5, 6] (60 dimen-
sions). The results achieved with these descriptors, and in particular the ones with the
shape contexts, can be applied to other ones of similar characteristics from the bibliog-
raphy [3, 4, 6–8]. We also used a synthetic corpus of sequences of several dimensions (1,
5, 10, 20 and 60). We generated 1000 sequences (for each number of dimensions) with
a random walk (for each dimension of the sequence) defined by xi = xi−1 + N(0, 1)
and x1 = 0 as in [19].

In the following, we will observe how the intrinsic dimensionality affects CDTW to
satisfy the triangular inequality property. Subsequently, speeding up results are shown
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Fig. 4. Dimensions of the sequences, histograms of the distribution of distances, the distribution
of H and the percentage of triplets that violate the triangular inequality, for the experiments with
the random-walk synthetic corpus.

with AESA with respect to an exhaustive search. Finally, we will see how using AESA
affects classification and retrieval rates.

4.1 Intrinsic Dimensionality and Triangular Inequality

In Figure 4, we can see by means of histograms the relation between the distribution
of distances and the distribution of H (Section 3). We performed an experiment similar
to the one in [19], with random-walk sequences, but varying the number of dimen-
sions (in [19] this experiment was done for just one dimension). We generated 1000
sequences for each number of dimensions, then we checked 1000000000 triplets. The
fact of having the distribution of distances near to 0 (as it happens with sequences of one
dimension) makes more probable to find triplets that violate the triangular inequality in
the distribution of H . On the other hand, if the distribution of distances is far from the
value 0 (as it happens with sequences of 20 dimensions), the percentage considerably
decreases.

With respect to real world data, Table 1 shows the dimensionality and the corre-
sponding percentage of triplets that violate the triangular inequality for each shape de-
scriptor. As we can be observe, the greater the dimensionality the lower the percentage
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Table 1. Comparison of the dimensionality with the percentage of triplets that violate the trian-
gular inequality.

Dimensions Violations
MPEG7B Curvature 1 2.95 %

BAS 4 7.25·10−3 %
SC 60 7.07·10−5 %

Silhouette Curvature 1 3.93·10−1 %
BAS 4 2.61·10−5 %
SC 60 6.54·10−7 %

of triplets. As it is commented in Section 3, a great value in the intrinsic dimensionality
makes the violation of the triangular inequality less probable.

4.2 Time

We also performed experiments of shape retrieval for the k most similar shapes, with
values of k: 1, 5, 10, 20 and 40. To use AESA to obtain the k nearest neighbours we can
keep a sorted list of them and prune with the last one. In classification, in many cases,
it would be enough k = 1, although we could also use greater values. In retrieval, 10
or 20 prototypes could be enough for a first answer (or even unique) for a user of a
concrete application of shape retrieval.

For BAS and SC we present a graph (Figure 5) with the average time of AESA,
with respect to an exhaustive search. There is a huge improvement.

4.3 Classification and Retrieval Rates Using AESA and CDTW

Finally, we need to mention the classification and retrieval rates for the k nearest neigh-
bours (Table 2). The only results that change are the ones of the curvature, but the
difference is not so great.

Table 2. Recognition rates for an exhaustive search and AESA.

Curvature BAS SC
k Exhaustive AESA Exhaustive AESA Exhaustive AESA

MPEG7B 1 90.50 90.00 97.64 97.64 98.78 98.78
5 83.21 83.23 94.91 94.91 96.67 96.67
10 70.94 70.74 88.44 88.44 91.63 91.63
20 55.39 55.29 74.61 74.61 79.20 79.20
40 63.83 63.43 82.85 82.85 86.73 86.73

Silhouette 1 91.87 91.77 96.91 96.91 98.59 98.59
5 88.25 88.20 94.66 94.66 97.77 97.77
10 80.27 80.27 90.75 90.75 95.81 95.81
20 69.47 69.47 83.13 83.13 90.60 90.60
40 61.20 61.20 73.85 73.85 83.03 83.03
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Fig. 5. Average time of an exhaustive search and AESA for (a) BAS, and (b) the shape contexts
with the MPEG7B database. For (c) BAS, and (d) the shape contexts with the Silhouette database.

5 Discussion

From the experiments presented in the last section, it is clear that when the dimension-
ality of the cyclic sequences is sufficiently high we can obtain a very low percentage
of triplets that violate the triangular inequality. In real tasks of shape classification and
retrieval with AESA and CDTW, we have studied three shape descriptors with different
number of dimensions. In particular the curvature, despite having a significant percent-
age of violations of the triangle inequality, surprisingly obtains quite acceptable rates
with AESA (without being the same ones). With BAS and SC descriptors the rates are
the same with respect to an exhaustive search. But if the results of the curvature are
acceptable, with descriptors of higher dimensionality we can be more confident that
AESA will have a good behaviour. We want to remark as well that our proposal sig-
nificantly speeds up the classification and retrieval of these shape descriptors [2–8] and
that our heuristic is the only alternative to an exhaustive search for them.

Of course, this proposal can be applied to other contexts based on DTW, not just
the one of shape recognition and obviously it is possible to use other indexing methods
based on metric spaces. In posterior work we aim to explore these contexts.
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