8 research outputs found

    Contrast-enhanced computed tomography assessment of aortic stenosis

    Get PDF
    Abstract Objectives Non-contrast CT aortic valve calcium scoring ignores the contribution of valvular fibrosis in aortic stenosis. We assessed aortic valve calcific and non-calcific disease using contrast-enhanced CT. Methods This was a post hoc analysis of 164 patients (median age 71 (IQR 66–77) years, 78% male) with aortic stenosis (41 mild, 89 moderate, 34 severe; 7% bicuspid) who underwent echocardiography and contrast-enhanced CT as part of imaging studies. Calcific and non-calcific (fibrosis) valve tissue volumes were quantified and indexed to annulus area, using Hounsfield unit thresholds calibrated against blood pool radiodensity. The fibrocalcific ratio assessed the relative contributions of valve fibrosis and calcification. The fibrocalcific volume (sum of indexed non-calcific and calcific volumes) was compared with aortic valve peak velocity and, in a subgroup, histology and valve weight. Results Contrast-enhanced CT calcium volumes correlated with CT calcium score (r=0.80, p<0.001) and peak aortic jet velocity (r=0.55, p<0.001). The fibrocalcific ratio decreased with increasing aortic stenosis severity (mild: 1.29 (0.98–2.38), moderate: 0.87 (1.48–1.72), severe: 0.47 (0.33–0.78), p<0.001) while the fibrocalcific volume increased (mild: 109 (75–150), moderate: 191 (117–253), severe: 274 (213–344) mm3/cm2). Fibrocalcific volume correlated with ex vivo valve weight (r=0.72, p<0.001). Compared with the Agatston score, fibrocalcific volume demonstrated a better correlation with peak aortic jet velocity (r=0.59 and r=0.67, respectively), particularly in females (r=0.38 and r=0.72, respectively). Conclusions Contrast-enhanced CT assessment of aortic valve calcific and non-calcific volumes correlates with aortic stenosis severity and may be preferable to non-contrast CT when fibrosis is a significant contributor to valve obstruction

    Unusual regulation of a STAT protein by an SLC6 family transporter in C. elegans epidermal innate immunity.

    Get PDF
    International audienceThe cuticle and epidermis of Caenorhabditis elegans provide the first line of defense against invading pathogens. Upon invasion by the fungal pathogen Drechmeria coniospora, C. elegans responds by upregulating the expression of antimicrobial peptides (AMPs) in the epidermis via activation of at least two pathways, a neuroendocrine TGF-β pathway and a p38 MAPK pathway. Here, we identify the sodium-neurotransmitter symporter SNF-12, a member of the solute carrier family (SLC6), as being essential for both these immune signaling pathways. We also identify the STAT transcription factor-like protein STA-2 as a direct physical interactor of SNF-12 and show that the two proteins function together to regulate AMP gene expression in the epidermis. Both SNF-12 and STA-2 act cell autonomously and specifically in the epidermis to govern the transcriptional response to fungal infection. These findings reveal an unorthodox mode of regulation for a STAT factor and highlight the molecular plasticity of innate immune signaling

    Syntenin controls migration, growth, proliferation, and cell cycle progression in cancer cells

    Get PDF
    The scaffold protein syntenin abounds during fetal life where it is important for developmental movements. In human adulthood, syntenin gain-of-function is increasingly associated with various cancers and poor prognosis. Depending on the cancer model analyzed, syntenin affects various signaling pathways. We previously have shown that syntenin allows syndecan heparan sulfate proteoglycans to escape degradation. This indicates that syntenin has the potential to support sustained signaling of a plethora of growth factors and adhesion molecules. Here, we aim to clarify the impact of syntenin loss-of-function on cancer cell migration, growth, and proliferation, using cells from various cancer types and syntenin shRNA and siRNA silencing approaches. We observed decreased migration, growth, and proliferation of the mouse melanoma cell line B16F10, the human colon cancer cell line HT29 and the human breast cancer cell line MCF7. We further documented that syntenin controls the presence of active β1 integrin at the cell membrane and G1/S cell cycle transition as well as the expression levels of CDK4, Cyclin D2, and Retinoblastoma proteins. These data confirm that syntenin supports the migration and growth of tumor cells, independently of their origin, and further highlight the attractiveness of syntenin as potential therapeutic target.status: publishe

    Syntenin mediates SRC function in exosomal cell-to-cell communication

    No full text
    The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin-syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell-cell communication, supported by syntenin exosomes, which is likely to contribute to tumor-host interactions.status: publishe

    Syntenin mediates SRC function in exosomal cell-to-cell communication

    No full text
    The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin-syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell-cell communication, supported by syntenin exosomes, which is likely to contribute to tumor-host interactions.status: publishe

    Proteomic peptide phage display uncovers novel interactions of the PDZ1-2 supramodule of syntenin

    No full text
    Syntenin has crucial roles in cell adhesion, cell migration and synaptic transmission. Its closely linked postsynaptic density-95, discs large 1, zonula occludens-1 (PDZ) domains typically interact with C-terminal ligands. We profile syntenin PDZ1-2 through proteomic peptide phage display (ProP-PD) using a library that displays C-terminal regions of the human proteome. The protein recognizes a broad range of peptides, with a preference for hydrophobic motifs and has a tendency to recognize cryptic internal ligands. We validate the interaction with nectin-1 through orthogonal assays. The study demonstrates the power of ProP-PD as a complementary approach to uncover interactions of potential biological relevance.status: publishe

    Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear

    Get PDF
    International audienceVangl2 is one of the central proteins controlling the establishment of planar cell polarity in multiple tissues of different species. Previous studies suggest that the localization of the Vangl2 protein to specific intracellular microdomains is crucial for its function. However, the molecular mechanisms that control Vangl2 trafficking within a cell are largely unknown. Here, we identify Gipc1 (GAIP C-terminus interacting protein 1) as a new interactor for Vangl2, and we show that a myosin VI-Gipc1 protein complex can regulate Vangl2 traffic in heterologous cells. Furthermore, we show that in the cochlea of MyoVI mutant mice, Vangl2 presence at the membrane is increased, and that a disruption of Gipc1 function in hair cells leads to maturation defects, including defects in hair bundle orientation and integrity. Finally, stimulated emission depletion microscopy and overexpression of GFP-Vangl2 show an enrichment of Vangl2 on the supporting cell side, adjacent to the proximal membrane of hair cells. Altogether, these results indicate a broad role for Gipc1 in the development of both stereociliary bundles and cell polarization, and suggest that the strong asymmetry of Vangl2 observed in early postnatal cochlear epithelium is mostly a ‘tissue’ polarity readout
    corecore