136 research outputs found
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Sward structure of marandu palisadegrass subjected to continuous stocking and nitrogen-induced rhythms of growth
Acceleration of the growth rhythm of plants using nitrogen fertiliser alters the rates of physiological processes like growth and senescence and may cause significant changes in sward structure, interfering with plant and animal responses. The objective of this experiment was to evaluate sward structure of marandu palisadegrass (Brachiaria brizantha) maintained at 30 cm under continuous stocking and subjected to contrasting rhythms of growth from January 2007 to April 2008. These were generated using or not nitrogen fertiliser, and comprised four experimental treatments as follows: control (non-fertilised), 150, 300 and 450 kg ha-1 of N. Acceleration of the growth rhythm of plants was associated with increases in leaf and stem bulk density, and resulted in larger LAI and total bulk density on swards subjected to faster (fertilised with 300 and 450 kg ha-1 of N) than those subjected to slower rhythms of growth (non-fertilised or fertilised with 150 kg ha-1 of N). Variations in dead material bulk density were associated with seasonal variations in climatic conditions, and were not influenced by growth rhythms. During autumn/winter and early spring (dry period of the year) swards subjected to faster, relative to those subjected to slower rhythms of growth, had larger proportion of leaves on the top horizons. On the other hand, sward structure did not vary among rhythms of growth at times of the year when there was no limitation in the availability of climatic growth factors (late spring and summer), indicating that when control of the grazing process is efficient, changes in sward structure are basically a function of seasonal variations in climatic growth conditions and phenological state of plants.A aceleração do ritmo de crescimento das plantas por meio da adubação nitrogenada altera a velocidade dos processos fisiológicos, atuando sobre o crescimento e a senescência, podendo refletir-se em alterações importantes sobre a estrutura do dossel. Avaliou-se a estrutura do dossel forrageiro de pastos de capim-marandu (Brachiaria brizantha) mantidos a 30 cm de altura por meio de lotação contínua e submetidos a ritmos de crescimento contrastantes de janeiro de 2007 a abril de 2008. Os distintos ritmos de crescimento foram criados por meio da utilização de adubação nitrogenada, segundo os tratamentos: sem adubação (controle), 150, 300 e 450 kg ha-1 de N. A aceleração do ritmo de crescimento dos pastos resultou em aumentos de densidade volumétrica de folhas e de colmos, refletindo em maior IAF e densidade volumétrica total em pastos submetidos aos ritmos de crescimento mais acelerados (adubados com 300 e 450 kg ha-1 de N) relativamente àqueles submetidos a ritmos de crescimento mais lentos (pastos não adubados e/ou adubados com 150 kg ha-1 de N). Variações em densidade volumétrica do material morto estiveram associadas a flutuações estacionais das condições climáticas, e não foram influenciadas pelos ritmos de crescimento avaliados. Na época da seca (outono/inverno e início de primavera), os pastos submetidos aos ritmos de crescimento mais acelerados apresentaram maior proporção de folhas no horizonte superior do dossel. Por outro lado, a estrutura do dossel não variou entre os ritmos de crescimento nas épocas de maior disponibilidade de fatores de crescimento (final de primavera e verão), indicando que quando o controle do processo de pastejo é feito de maneira eficiente, mudanças em estrutura são função basicamente de variações estacionais em condições climáticas e estádio fenológico das plantas
The Earth: Plasma Sources, Losses, and Transport Processes
This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed
Constraints on anomalous QGC's in interactions from 183 to 209 GeV
The acoplanar photon pairs produced in the reaction e(+) e(-) - → vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings
- …