83 research outputs found

    Identification and characterisation of a novel GHR defect disrupting the polypyrimidine tract and resulting in GH insensitivity

    Get PDF
    Objective GH insensitivity (GHI) is caused in the majority of cases by impaired function of the GH receptor (GHR). All but one known GHR mutation are in the coding sequence or the exon/intron boundaries. We identified and characterised the first intronic defect occurring in the polypyrimidine tract of the GHR in a patient with severe GHI. Design We investigated the effect of the novel defect on mRNA splicing using an in vitro splicing assay and a cell transfection system. Methods GHR was analysed by direct sequencing. To assess the effect of the novel defect, two heterologous minigenes (wild-type and mutant L1-GHR8-L2) were generated by inserting GHR exon 8 and its flanking wild-type or mutant intronic sequences into a well-characterised splicing reporter (Adml-par L1–L2). 32P-labelled pre-mRNA was generated from the two constructs and incubated in HeLa nuclear extracts or HEK293 cells. Results Sequencing of the GHR revealed a novel homozygous defect in the polypyrimidine tract of intron 7 (IVS7-6T>A). This base change does not involve the highly conserved splice site sequences, and is not predicted in silico to affect GHR mRNA splicing. Nevertheless, skipping of exon 8 from the mutant L1-GHR8-L2 mRNA was clearly demonstrated in the in vitro splicing assay and in transfected HEK293 cells. Conclusion Disruption of the GHR polypyrimidine tract causes aberrant mRNA splicing leading to a mutant GHR protein. This is predicted to lack its transmembrane and intracellular domains and, thus, be incapable of transducing a GH signal

    Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A measurement of the forward-backward asymmetry of pairs of oppositely charged leptons (dimuons and dielectrons) produced by the Drell-Yan process in proton-proton collisions is presented. The data sample corresponds to an integrated luminosity of 138 fb−1 collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV. The asymmetry is measured as a function of lepton pair mass for masses larger than 170 GeV and compared with standard model predictions. An inclusive measurement across both channels and the full mass range yields an asymmetry of 0.612 ± 0.005 (stat) ± 0.007 (syst). As a test of lepton flavor universality, the difference between the dimuon and dielectron asymmetries is measured as well. No statistically significant deviations from standard model predictions are observed. The measurements are used to set limits on the presence of additional gauge bosons. For a Z′ boson in the sequential standard model the observed (expected) 95% confidence level lower limit on the Z′ mass is 4.4 TeV (3.7 TeV)

    Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at root s=13 TeV

    Get PDF
    A measurement of the forward-backward asymmetry of pairs of oppositely charged leptons (dimuons and dielectrons) produced by the Drell-Yan process in proton-proton collisions is presented. The data sample corresponds to an integrated luminosity of 138 fb−1 collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV. The asymmetry is measured as a function of lepton pair mass for masses larger than 170 GeV and compared with standard model predictions. An inclusive measurement across both channels and the full mass range yields an asymmetry of 0.612 ± 0.005 (stat) ± 0.007 (syst). As a test of lepton flavor universality, the difference between the dimuon and dielectron asymmetries is measured as well. No statistically significant deviations from standard model predictions are observed. The measurements are used to set limits on the presence of additional gauge bosons. For a Z′ boson in the sequential standard model the observed (expected) 95% confidence level lower limit on the Z′ mass is 4.4 TeV (3.7 TeV)
    corecore