423 research outputs found
A promising new ELISA diagnostic test for cattle babesiosis based on Babesia bigemina Apical Membrane Antigen-1.
Babesiosis due to Babesia bigemina is a relevant tick‑borne disease, affecting cattle worldwide. Many surface proteins of the pathogen including the Apical Membrane Antigen 1 (AMA‑1) ‑ have been analysed for vaccine and diagnostic purposes. This study focused on B. bigemina AMA‑1 and on its use for the assessment of diagnostic tests. After bioinformatic analyses, AMA‑1 codifying region was amplified and cloned into an expression vector used to induce protein synthesis in Escherichia coli cells. AMA‑1 was purified by affinity chromatography and used to set up the best condition for an ELISA protocol. Bovine field sera positive to B. bigemina were used to evaluate the presence of anti‑AMA‑1 antibodies. In order to verify the assay specificity, sera positive to Babesia bovis or to the piroplasm Theileria annulata were also included. Significant differences were obtained between sera negative to both B. bigemina and B. bovis and samples positive to B. bigemina, to B. bovis or to both pathogens. No significant reaction was observed with T. annulata positive sera. The results showed that AMA‑1 protein is suitable to be used as antigen in diagnostic assays for babesiosis diagnosis in cattle, as it does not show any cross reaction with anti-T. annulata antibodies
Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development
Mobile devices and platforms have become an established target for modern
software developers due to performant hardware and a large and growing user
base numbering in the billions. Despite their popularity, the software
development process for mobile apps comes with a set of unique, domain-specific
challenges rooted in program comprehension. Many of these challenges stem from
developer difficulties in reasoning about different representations of a
program, a phenomenon we define as a "language dichotomy". In this paper, we
reflect upon the various language dichotomies that contribute to open problems
in program comprehension and development for mobile apps. Furthermore, to help
guide the research community towards effective solutions for these problems, we
provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference
on Program Comprehension (ICPC'18
Malin 1: interacting galaxy pair?
Malin 1 is a unique, extraordinarily large low surface brightness galaxy. The
structure and the origins of the galaxy are poorly understood. The reason for
such a situation is an absence of detailed observational data, especially, of
high-resolution kinematics. In this Letter we study the stellar kinematics of
the inner part (r < 15 kpc) of Malin 1. We present spectroscopic arguments in
favour of a small galaxy - Malin 1B - being a companion probably interacting
with the main galaxy - Malin 1. This object is clearly seen in many published
images of Malin 1 but is not mentioned in any astronomical databases. Malin 1B
is located at the projected distance of 14 kpc from the Malin 1's nucleus and
has small - 6516 km/s - relative velocity, which we determined for the
first time. We suggest that ongoing interaction with Malin 1B can explain main
morphological features of the Malin 1's central region - two-armed spiral
structure, a bar, and an external one-armed spiral pattern. We also
investigated the large scale environment of Malin 1 and postulate that the
galaxy SDSS J123708.91+142253.2 might be responsible for the formation of
extended low-surface brightness envelope by means of head-on collision with
Malin 1 (in the framework of collision scenario proposed by Mapelli et al.
2008). To test the collisional origins of Malin 1 global structure, more
observational data and new numerical models are needed.Comment: 5 pages, 4 figures, accepted for publication in MNRA
Molecular gas and star formation in the Tidal Dwarf Galaxy VCC 2062
The final, definitive version of this paper has been published in A&A, Vol 590, A92, June 2016, doi: 10.1051/0004-6361/201527887. Reproduced with permission from Astronomy & Astrophysics, © ESO.The physical mechanisms driving star formation (SF) in galaxies are still not fully understood. Tidal dwarf galaxies (TDGs), made of gas ejected during galaxy interactions, seem to be devoid of dark matter and have a near-solar metallicity. The latter makes it possible to study molecular gas and its link to SF using standard tracers (CO, dust) in a peculiar environment. We present a detailed study of a nearby TDG in the Virgo Cluster, VCC 2062, using new high-resolution CO(1--0) data from the Plateau de Bure, deep optical imaging from the Next Generation Virgo Cluster Survey (NGVS), and complementary multiwavelength data. Until now, there was some doubt whether VCC 2062 was a true TDG, but the new deep optical images from the NGVS reveal a stellar bridge between VCC 2062 and its parent galaxy, NGC 4694, which is clear proof of its tidal origin. Several high-resolution tracers (\halpha, UV, 8~\mi, and 24~\mi) of the star formation rate (SFR) are compared to the molecular gas distribution as traced by the CO(1-0). Coupled with the SFR tracers, the NGVS data are used with the CIGALE code to model the stellar populations throughout VCC 2062, yielding a declining SFR in the recent past, consistent with the low \halpha/UV ratio, and a high burst strength. HI emission covers VCC 2062, whereas the CO is concentrated near the HI maxima. The CO peaks correspond to two very distinct regions: one with moderate SF to the NE and one with only slightly weaker CO emission but with nearly no SF. Even where SF is clearly present, the SFR is below the value expected from the surface density of the molecular and the total gas as compared to spiral galaxies and other TDGs. After discussing different possible explanations, we conclude that the low surface brightness is a crucial parameter to understand the low SFR.Peer reviewe
From spirals to lenticulars: evidence from the rotation curves and mass models of three early-type galaxies
Rotation curves have traditionally been difficult to trace for early-type
galaxies (ETGs) because they often lack a high-density disk of cold gas as in
late-type galaxies (LTGs). We derive rotation curves for three lenticular
galaxies from the ATLAS3D survey, combining CO data in the inner parts with
deep HI data in the outer regions, extending out to 10-20 effective radii. We
also use Spitzer photometry at 3.6 um to decompose the rotation curves into the
contributions of baryons and dark matter (DM). We find that (1) the
rotation-curve shapes of these ETGs are similar to those of LTGs of similar
mass and surface brightness; (2) the dynamicallyinferred stellar
mass-to-light ratios are small for quiescent ETGs but similar to those of
star-forming LTGs; (3) the DM halos follow the same scaling relations with
galaxy luminosity as those of LTGs; (4) one galaxy (NGC 3626) is poorly fitted
by cuspy DM profiles, suggesting that DM cores may exist in high-mass galaxies
too. Our results indicate that these lenticular galaxies have recently
transitioned from LTGs to ETGs without altering their DM halo structure (e.g.,
via a major merger) and could be faded spirals. We also confirm that ETGs
follow the same radial acceleration relation as LTGs, reinforcing the notion
that this is a universal law for all galaxy types.Comment: Accepted for publication in A&
PEXO : a global modeling framework for nanosecond timing, microsecond astrometry, and μm/s radial velocities
54 pages, 2 tables, 19 figures, accepted for publication in ApJS, PEXO is available at https://github.com/phillippro/pexoThe ability to make independent detections of the signatures of exoplanets with complementary telescopes and instruments brings a new potential for robust identification of exoplanets and precision characterization. We introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry, and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary companions and is precise enough to treat various relativistic effects both in the solar system and in the target system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1{\mu}as, and radial velocity of 1 {\mu}m/s and improves on TEMPO2 for decade-long timing data of nearby targets, due to its consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the target system and the solar system and to account for the atmospheric effects which set a practical limit for ground-based radial velocities close to 1 cm/s. Considering the various caveats in barycentric correction and ancillary data required to realize cm/s modeling, we recommend the preservation of original observational data. The PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo).Peer reviewe
Gas Accretion and Star Formation Rates
Cosmological numerical simulations of galaxy evolution show that accretion of
metal-poor gas from the cosmic web drives the star formation in galaxy disks.
Unfortunately, the observational support for this theoretical prediction is
still indirect, and modeling and analysis are required to identify hints as
actual signs of star-formation feeding from metal-poor gas accretion. Thus, a
meticulous interpretation of the observations is crucial, and this
observational review begins with a simple theoretical description of the
physical process and the key ingredients it involves, including the properties
of the accreted gas and of the star-formation that it induces. A number of
observations pointing out the connection between metal-poor gas accretion and
star-formation are analyzed, specifically, the short gas consumption time-scale
compared to the age of the stellar populations, the fundamental metallicity
relationship, the relationship between disk morphology and gas metallicity, the
existence of metallicity drops in starbursts of star-forming galaxies, the
so-called G dwarf problem, the existence of a minimum metallicity for the
star-forming gas in the local universe, the origin of the alpha-enhanced gas
forming stars in the local universe, the metallicity of the quiescent BCDs, and
the direct measurements of gas accretion onto galaxies. A final section
discusses intrinsic difficulties to obtain direct observational evidence, and
points out alternative observational pathways to further consolidate the
current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springe
Microbiological and serological monitoring in hooded crow (Corvus corone cornix) in the Region Lombardia, Italy
The health status of 276 hooded crows (Corvus corone cornix) from various provinces of Lombardy was monitored for three years. Bacteriological examination detected E. coli (76%), Campylobacter jejuni (17%), Salmonella typhimurium (11.6%), Yersinia spp. (6.5%), Clamydophila abortus and C. psittaci (2.6%); from six birds showing severe prostration Pasteurella multocida was isolated. Virological and serological tests were negative for Avian Influenza virus (AIV), West Nile virus (WNV) and only three samples were positive for Newcastle disease virus (NDV) but only at serology (titre 1:16)
Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile Virus in Greece
West Nile Virus (WNV) is the causative agent of a vector-borne, zoonotic disease with a worldwide distribution. Recent expansion and introduction of WNV into new areas, including southern Europe, has been associated with severe disease in humans and equids, and has increased concerns regarding the need to prevent and control future WNV outbreaks. Since 2010, 524 confirmed human cases of the disease have been reported in Greece with greater than 10% mortality. Infected mosquitoes, wild birds, equids, and chickens have been detected and associated with human disease. The aim of our study was to establish a monitoring system with wild birds and reported human cases data using Geographical Information System (GIS). Potential distribution of WNV was modelled by combining wild bird serological surveillance data with environmental factors (e.g. elevation, slope, land use, vegetation density, temperature, precipitation indices, and population density). Local factors including areas of low altitude and proximity to water were important predictors of appearance of both human and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723–1,386). Using GIS analysis, the identified risk factors were applied across Greece identifying the northern part of Greece (Macedonia, Thrace) western Greece and a number of Greek islands as being at highest risk of future outbreaks. The results of the analysis were evaluated and confirmed using the 161 reported human cases of the 2012 outbreak predicting correctly (Odds = 130/31 = 4,194 95%CI = 2,841–6,189) and more areas were identified for potential dispersion in the following years. Our approach verified that WNV risk can be modelled in a fast cost-effective way indicating high risk areas where prevention measures should be implemented in order to reduce the disease incidence
- …
