9 research outputs found

    Functionalized cyclophellitols are selective glucocerebrosidase inhibitors and induce a bona fide neuropathic Gaucher model in zebrafish

    Get PDF
    Gaucher disease is caused by inherited deficiency in glucocerebrosidase (GBA, a retaining ÎČ-glucosidase), and deficiency in GBA constitutes the largest known genetic risk factor for Parkinson's disease. In the past, animal models of Gaucher disease have been generated by treatment with the mechanism-based GBA inhibitors, conduritol B epoxide (CBE), and cyclophellitol. Both compounds, however, also target other retaining glycosidases, rendering generation and interpretation of such chemical knockout models complicated. Here we demonstrate that cyclophellitol derivatives carrying a bulky hydrophobic substituent at C8 are potent and selective GBA inhibitors and that an unambiguous Gaucher animal model can be readily generated by treatment of zebrafish with these

    Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish

    Get PDF
    In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson's disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons

    Gaucher disease protects against tuberculosis.

    Get PDF
    Biallelic mutations in the glucocerebrosidase (GBA1) gene cause Gaucher disease, characterized by lysosomal accumulation of glucosylceramide and glucosylsphingosine in macrophages. Gaucher and other lysosomal diseases occur with high frequency in Ashkenazi Jews. It has been proposed that the underlying mutations confer a selective advantage, in particular conferring protection against tuberculosis. Here, using a zebrafish Gaucher disease model, we find that the mutation GBA1 N370S, predominant among Ashkenazi Jews, increases resistance to tuberculosis through the microbicidal activity of glucosylsphingosine in macrophage lysosomes. Consistent with lysosomal accumulation occurring only in homozygotes, heterozygotes remain susceptible to tuberculosis. Thus, our findings reveal a mechanistic basis for protection against tuberculosis by GBA1 N370S and provide biological plausibility for its selection if the relatively mild deleterious effects in homozygotes were offset by significant protection against tuberculosis, a rampant killer of the young in Europe through the Middle Ages into the 19th century

    Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish

    No full text
    In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson’s disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons

    1,6- epi-Cyclophellitol Cyclosulfamidate Is a Bona Fide Lysosomal α-Glucosidase Stabilizer for the Treatment of Pompe Disease

    Get PDF
    α-Glucosidase inhibitors are potential therapeutics for the treatment of diabetes, viral infections, and Pompe disease. Herein, we report a 1,6-epi-cyclophellitol cyclosulfamidate as a new class of reversible α-glucosidase inhibitors that displays enzyme inhibitory activity by virtue of its conformational mimicry of the substrate when bound in the Michaelis complex. The α-d-glc-configured cyclophellitol cyclosulfamidate 4 binds in a competitive manner the human lysosomal acid α-glucosidase (GAA), ER α-glucosidases, and, at higher concentrations, intestinal α-glucosidases, displaying an excellent selectivity over the human ÎČ-glucosidases GBA and GBA2 and glucosylceramide synthase (GCS). Cyclosulfamidate 4 stabilizes recombinant human GAA (rhGAA, alglucosidase alfa, Myozyme) in cell medium and plasma and facilitates enzyme trafficking to lysosomes. It stabilizes rhGAA more effectively than existing small-molecule chaperones and does so in vitro, in cellulo, and in vivo in zebrafish, thus representing a promising therapeutic alternative to Miglustat for Pompe disease

    Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish

    No full text
    In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson's disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons

    Lysosomal Storage Diseases. For Better or Worse: Adapting to Defective Lysosomal Glycosphingolipid Breakdown

    No full text
    The cellular recycling of glycosphingolipids (GSLs) is mediated by specific lysosomal glycosidases. Inherited deficiencies in these enzymes cause lysosomal storage disorders. Some of the common disorders are Gaucher disease (GD) and Fabry disease (FD) resulting from the defects in lysosomal glucocerebrosidase (GBA) degrading glucosylceramide and α‐galactosidase A (GLA) degrading globotriaosylceramide. Here, GSL accumulation in tissues slows down with age despite ongoing lysosomal turnover of endogenous and endocytosed GSLs. Biochemical adaptations might explain this phenomenon. One crucial adaptation is the deacylation of accumulating GSLs in lysosomes by acid ceramidase. The soluble bases glucosylsphingosine in GD and globotriaosylsphingosine in FD are capable of leaving lysosomes and cells. In the case of GD, a further adaptation involves the cytosol‐faced enzyme GBA2. This enzyme allows extra‐lysosomal degradation of GlcCer while possibly generating glucosylated cholesterol. The beneficial and harmful effects of these adaptations are discussed.Key concepts: Glycosphingolipids (GSLs) are membrane constituents composed of a ceramide with one or more sugars. The simplest GSL is glucosylceramide (GlcCer). Ongoing recycling of GSLs in cells includes lysosomal degradation by the sequential action of glycosidases and acid ceramidase. Deficiency of lysosomal glycosidase leads to lysosomal storage diseases caused by accumulation of the corresponding substrate in lysosomes. The most common glycosphingolipidoses are Gaucher disease (GD) and Fabry disease (FD). GD is an autosomal recessive disorder caused by deficient activity of the lysosomal enzyme acid ÎČ‐glucosidase (glucocerebrosidase; GBA) resulting in lysosomal accumulation of GlcCer. FD is an X‐linked disorder caused by deficient activity of the lysosomal enzyme α‐galactosidase A (GLA) resulting in lysosomal accumulation of globotriaosylceramide (Gb3). Accumulation of storage lipids during GBA and GLA tends to slow down with age, likely partly due to poorly appreciated biochemical adaptations. Active conversion of accumulating GlcCer in lysosomes of GBA‐deficient cells is mediated by acid ceramidase, resulting in the formation of water‐soluble glucosylsphingosine (GlcSph). Likewise, globotriaosylsphingosine (lysoGb3) is formed from accumulating in lysosomes of GLA‐deficient cells. Elevated plasma GlcSph and lysoGb3 levels can be sensitively measured LC–MS and may assist in diagnosing and monitoring of the disease and response to treatment in GD and FD patients, respectively. Increased GlcSph level in GD patients acts as an autoantigen, causing ongoing B‐cell proliferation, leading to multiple myeloma. Increased lysoGb3 level in FD patients is thought to cause damage to nociceptive neurons and podocytes, thus contributing to pain and renal failure. In GD, the cytosol‐faced enzyme ÎČ‐glucosidase GBA2 allows degradation of GlcCer outside lysosomes. Through transglycosylation, GBA2 may generate glucosylcholesterol and ceramide from GlcCer and cholesterol. The toxic effects of secondary metabolites such as glycosphingoid bases (GlcSph in GD and lysoGb3 in FD) and glucosylated metabolites (GlcChol in GD) warrant further investigations.info:eu-repo/semantics/publishedVersio
    corecore