157 research outputs found

    Reviewing the Palaeoenvironmental Record to Better Understand Long-Term Human-Environment Interaction in Inner Asia During the Late Holocene

    Get PDF
    The Middle to Late Holocene spread of agropastoralism throughout Eurasia not only subjected domesticated taxa to stressors associated with novel environments but also induced changes in these environments following the introduction of these social-ecological systems. The mountainous region of Inner Asia comprises various steppe, meadow, and forest landscapes where zooarchaeological evidence suggests occupation by herding populations as early as 7,000 years Before Present (BP). Recent archaeobotanical findings indicate the introduction of cropping and the development of agropastoralism around 4,500 BP. Here, we review and synthesize palaeoenvironmental studies and data to examine anthropogenic impacts and modifications of these landscapes. From around 4,000 BP, we find significant changes in palynomorph, charcoal, sediment, and other proxy data, related to the introduction of agriculture to the region, with later intensifications in land use indicators at around 2,000 and 1,000 BP. We note that these impacts are not uniform or continuous through and across the records and may be evidence of shifting phases of occupation and landscape management. This temporal and spatial variability may also be a response to shifts in moisture availability due to long-term Holocene changes in the intensity of the summer monsoon and Westerly circulation systems. Changes in arboreal pollen indicate the development of intensified use of forest resources in the region, which we identify as a topic for future investigation. Based on these data, we stress the long-term human paleoecology in the study area and argue that traditional agropastoralist systems should be considered in future programs of landscape conservation in the region. This study also emphasizes the importance of future local scale multiproxy studies into past anthropogenic changes within the Inner Asian landscape

    Reviewing the Palaeoenvironmental Record to Better Understand Long-Term Human-Environment Interaction in Inner Asia During the Late Holocene

    Get PDF
    The Middle to Late Holocene spread of agropastoralism throughout Eurasia not only subjected domesticated taxa to stressors associated with novel environments but also induced changes in these environments following the introduction of these social-ecological systems. The mountainous region of Inner Asia comprises various steppe, meadow, and forest landscapes where zooarchaeological evidence suggests occupation by herding populations as early as 7,000 years Before Present (BP). Recent archaeobotanical findings indicate the introduction of cropping and the development of agropastoralism around 4,500 BP. Here, we review and synthesize palaeoenvironmental studies and data to examine anthropogenic impacts and modifications of these landscapes. From around 4,000 BP, we find significant changes in palynomorph, charcoal, sediment, and other proxy data, related to the introduction of agriculture to the region, with later intensifications in land use indicators at around 2,000 and 1,000 BP. We note that these impacts are not uniform or continuous through and across the records and may be evidence of shifting phases of occupation and landscape management. This temporal and spatial variability may also be a response to shifts in moisture availability due to long-term Holocene changes in the intensity of the summer monsoon and Westerly circulation systems. Changes in arboreal pollen indicate the development of intensified use of forest resources in the region, which we identify as a topic for future investigation. Based on these data, we stress the long-term human paleoecology in the study area and argue that traditional agropastoralist systems should be considered in future programs of landscape conservation in the region. This study also emphasizes the importance of future local scale multiproxy studies into past anthropogenic changes within the Inner Asian landscape

    An overview

    Get PDF
    A total of 51,074 archaeological sites from the early Neolithic to the early Iron Age (c. 8000–500 BC), with a spatial extent covering most regions of China (c. 73–131°E and c. 20–53°N), were analysed over space and time in this study. Site maps of 25 Chinese provinces, autonomous regions and municipalities, published in the series ‘Atlas of Chinese Cultural Relics’, were used to extract, digitalise and correlate its archaeological data. The data were, in turn, entered into a database using a self-developed mapping software that makes the data, in a dynamic way, analysable as a contribution to various scientific questions, such as population growth and migrations, spread of agriculture and changes in subsistence strategies. The results clearly show asynchronous patterns of changes between the northern and southern parts of China (i.e. north and south of the Yangtze River, respectively) but also within these macro-regions. In the northern part of China (i.e. along the Yellow River and its tributaries and in the Xiliao River basin), the first noticeable increase in the concentration of Neolithic sites occurred between c. 5000 and 4000 BC; however, highest site concentrations were reached between c. 2000 and 500 BC. Our analysis shows a radical north- eastern shift of high site-density clusters (over 50 sites per 100 × 100 km grid cell) from the Wei and middle/lower Yellow Rivers to the Liao River system sometime between 2350 BC and 1750 BC. This shift is hypothetically discussed in the context of the incorporation of West Asian domesticated animals and plants into the existing northern Chinese agricultural system. In the southern part of China, archaeological sites do not show a noticeable increase in the absolute number of sites until after c. 1500 BC, reaching a maximum around 1000 BC

    Record of vegetation, climate change, human impact and retting of hemp in Garhwal Himalaya (India) during the past 4600 years

    Get PDF
    This study is focused on a 3.55-m-long sediment core retrieved from Badanital (i.e. the BT core) in 2008. Badanital (30°29′50″N, 78°55′26″E, 2083 m a.s.l.) is a small lake located in the upper catchment area of the Ganges in Garhwal Himalaya, northern India. The lake and the regional broad-leaved semi- evergreen forests are under the influence of the Indian Summer Monsoon (ISM) and westerly associated cyclones. Palynological investigation of the BT core revealed past vegetation changes reflecting both climate and human impact during the last 4600 years. Maximum spread of oaks occurred during c. AD 550–1100 and c. AD 1400–1630, that is, the intervals which partly overlap with the ‘Medieval Warm Period’ and the ‘Little Ice Age’, respectively. Three intervals of decreased oak pollen percentages are attributed to (1) continuously drier and cooler climatic conditions and fire activity (c. 2600–500 BC), (2) severe reduction in oak forests followed by secondary succession of alder woods (c. AD 1150–1270) and (3) pre-modern settlement activities since the British imperial occupation (after c. AD 1700). We argue that the high percentages (i.e. up to 28%) of Humulus/Cannabis type and Cannabis type pollen point to intense local retting of hemp c. 500 BC–AD 1050. Based on our age model, Cannabis fibre production at Badanital is contemporaneous with archaeological records of ancient hemp products from different parts of Eurasia suggesting possible linkages to early trade and knowledge exchange routes connecting India and the Himalaya with Central and East Asia and possibly Europe

    Archaeobotanical evidence of plant cultivation from the Sanbaopi site in south-western Taiwan during the Late Neolithic and Metal Age

    Get PDF
    Despite decades of lively debate about Taiwan’s role in the spread of early agriculture, crops and cultivation practices to the Indo-Pacific region, there is little archaeobotanical data from the island. Here we present the first directly dated and systematically analysed macrobotanical records from Taiwan obtained by flotation at the archaeological site Sanbaopi 5 (23°07′03′′N, 120°15′32′′E), representing the Dahu (1400 BCE–100 CE) and Niaosong (100–1400 CE) culture periods. The results suggest that Middle Dahu (900–100 BCE) communities in the study area practiced rainfed crop cultivation with mainly foxtail (Setaria italica) and broomcorn (Panicum miliaceum) millet and rice (Oryza sativa). Pulses (Vigna angularis, Glycine soja/max) were also part of the subsistence of local farmers and used as supplementary food and/or green manure. The archaeobotanical record together with archaeological site data for prehistoric China substantiates evidence that the Dahu culture originates in the Lower Yellow River region and migrated to Taiwan along the East China Sea coast. The emergence of the Dahu culture coincided with the spread of mixed millet-rice farming to the Korean Peninsula and Japan and was possibly related to enhanced economic and political expansion of the Shang and Western Zhou dynasties and the long-term weakening of summer monsoon precipitation. Pigeon pea (Cajanus cajan) and mung bean (V. radiata var. radiata) assemblages from the sixth century CE Niaosong period highlight the influx of goods, crops, knowledge and people from South and Southeast Asia via southern routes in the context of enhanced exchange across the South China Sea region

    Holocene vegetation and climate history in Baikal Siberia reconstructed from pollen records and its implications for archaeology

    Get PDF
    Past research has greatly improved our understanding of palaeoenvironmental changes in the Lake Baikal Region, but at the same time has indicated intra-regional variations in this vast study area. Here we present a new AMS-dated late glacial-middle Holocene (ca. 13,500-4000 cal. yr BP) pollen record from Lake Ochaul (54 degrees 14'N, 106 degrees 28'E; altitude 641 m a.s.l.) situated in the less-studied area of Cis-Baikal and compare reconstructed vegetation and climate dynamics with the published environmental history of Trans-Baikal based on the pollen record from Lake Kotokel (52 degrees 47'N, 108 degrees 07'E; altitude 458 m a.s.l.). Although both records show comparable major long-term trends in vegetation, there are considerable differences. Around Ochaul the landscape was relatively open during the Younger Dryas stadial, but forest vegetation started to spread at the late glacial/Holocene transition (ca. 11,650 cal. yr BP), thus ca. 1000 years earlier than around Kotokel. While in both regions taiga forests spread during the early and middle Holocene, the marked increase in Scots pine pollen in the Kotokel record after ca. 6800 cal. yr BP is not seen in that from Ochaul, where birch and coniferous taxa, such as Siberian pine, larch, spruce and fir, dominate, indicating different environmental conditions and driving forces in both study regions. However, the pollen data from Ochaul emphasizes that the Cis-Baikal area also saw a continuous increase in forest cover and in the proportion of conifers over birch trees and shrubs during the early-middle Holocene, which may have contributed to a decrease in the number of large herbivores, the main food resource of the Early Neolithic hunter-gatherer groups. This and rather abrupt reorganization of atmospheric circulation, which affected atmospheric precipitation distribution resulting in thicker and longer-lasting snow cover, may have led to a collapse of Early Neolithic Kitoi populations ca. 6660 cal. yr BP followed by a cultural "hiatus" in the archaeological records during the Middle Neolithic phase (ca. 6660-6060 cal. yr BP). The results stress the importance of sub-regional palaeoenvironmental studies and the need for a representative network of well-dated, high-resolution sediment archives for a better understanding of environmental changes and their potential impacts on the hunter-gatherer populations in the archaeologically-defined micro-regions

    The earliest directly dated saddle for horse-riding from a mid-1st millennium BCE female burial in Northwest China

    Get PDF
    The invention of the saddle substantially improved horseback-riding, which not only revolutionized warfare, but also eased long-distance speedy movement across Eurasia. Here we present the first detailed construction analysis and absolute age determination of a well-preserved soft leather saddle recovered from the tomb of a female deceased at the Yanghai cemetery site in the Turfan Basin at the eastern end of the Tian Shan mountains. Compared with the oldest known saddle from the Scythian Pazyryk culture site Tuekta barrow no. 1 (430–420 BCE) in north-western Altai, the Yanghai specimen radiocarbon dated to 727–396 BCE (95.4% probability range) is contemporaneous or possibly older. The saddle features the basic elements of soft saddle construction that are still used today: two stuffed, wing-shaped hides sewn together along the outer edges and separated by a central gullet-like spacer and lens-shaped support elements, resembling knee and thigh rolls of modern saddles. Being a masterful piece of leather- and needlework, it is, however, less complex compared to Scythian saddles from the 5th–3rd centuries BCE. Another specimen from nearby Subeixi site, which is also described in detail for the first time in the present study, much closer resembles the Pazyryk saddles in shape, size and structure. In Yanghai, equestrian paraphernalia appear in the grave assemblages during the entire burial period (ca. 1300 BCE to 200 CE), although in higher numbers only from ca. 300 BCE. In the same way, the burial of horses was not common until then. Despite the generally very good preservation of leather, only two saddles were discovered in Yanghai which makes them an exception rather than the norm and raises the question of whether these saddles were acquired from more specialized horse breeders, riders, and saddlers in the North

    Barley (Hordeum vulgare) in the Okhotsk culture (5th–10th century AD) of northern Japan and the role of cultivated plants in hunter-gatherer economies

    Get PDF
    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440–890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well- documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter–gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early–Middle Satsumon culture sites. This supports earlier suggestions that the “Satsumon type” barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the “Okhotsk type” spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley domains possibly existed ca. 600–1000 cal yr AD across the island region. Despite a large body of studies and numerous theoretical and conceptual debates, the question of how to differentiate between hunter–gatherer and farming economies persists reflecting the wide range of dynamic subsistence strategies used by humans through the Holocene. Our current study contributes to the ongoing discussion of this important issue

    The spread of rice to Japan: insights from Bayesian analysis of direct radiocarbon dates and population dynamics in East Asia

    Get PDF
    The shift from foraging to agriculture as an economic way of life can be influenced by multiple ecological and cultural factors. The introduction of rice cultivation in Japan appears to have facilitated a dietary and cultural transition from the Jomon to the Yayoi cultural repertoire (10th/4th century BCE). Here we examine how rice spread across the Yayoi cultural arena (Kyushu, Shikoku, and Honshu regions) using Bayesian modelling applied to a set of radiocarbon (14C) dates obtained from carbonized rice grains. The combined results of radiocarbon analysis and archaeological data suggest that rice could have appeared in the Central Highlands already in the 11th century BCE when the region was occupied by people of the Final Jomon culture group and was mainly used for ritual purposes. It then appeared in western Japan (northern Kyushu) in the 9th century BCE and continued to disperse discontinuously across eastern Japan. This dispersal pattern likely results from the fusion of Jomon hunter–fisher–gatherer groups in eastern Japan with cultural traits introduced from the Eurasian mainland. The main driving factors for the immigration of early rice farmers into Japan (starting around 1000 BCE) appears to have been sociopolitical. Transformations in China led to the dissemination of rice farmers into the Korean Peninsula about 500 years earlier. The main drivers likely comprised: (i) the eastward expansion of the Shang dynasty (ca. 1600–1400 BCE); (ii) the eastward expansion of the Zhou kingdom, accompanied by the establishment of satellite states, such as Lu (Shandong Province) and Yan (Beijing), following the defeat of the Shang in 1045 BCE; and (iii) the strengthening of local states during the early 8th century BCE after the weakening of the Zhou, due to conflicts with agropastoralists from the Asian steppes. In addition, it is likely that the gradual middle–late Holocene decrease in summer monsoon precipitation negatively affected agricultural yields in the regions located closer to the summer monsoon boundary, such as the middle Yellow River, and thus further fostered the observed population dynamics including the spread of rice farmers to the Korean Peninsula and Japan
    • …
    corecore