407 research outputs found

    Synchronized single electron emission from dynamical quantum dots

    Full text link
    We study synchronized quantized charge pumping through several dynamical quantum dots (QDs) driven by a single time modulated gate signal. We show that the main obstacle for synchronization being the lack of uniformity can be overcome by operating the QDs in the decay cascade regime. We discuss the mechanism responsible for lifting the stringent uniformity requirements. This enhanced functionality of dynamical QDs might find applications in nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP

    Einfluss der hypotensiven Periduralanästhesie auf den intraoperativen Blutverlust am Beispiel radikaler Resektionen maligner Knochentumoren der unteren Extremität

    Full text link
    EINLEITUNG: Fremdblutsparende Maßnahmen sind wegen der transfusionsassoziierten Risiken gerade bei Operationen mit zu erwartenden größeren Blutverlusten indiziert. In dieser Studie wurde untersucht, inwieweit Patienten, die sich einer radikalen Resektion eines malignen Knochentumors der unteren Extremität unterziehen mussten, von einer kontrolliert hypotensiven Periduralanästhesie (HPA) diesbezüglich profitieren. MATERIAL UND METHODEN: 20 Patienten erhielten o.g. Eingriff in HPA. Die Ergebnisse wurden mit den Werten historischer Patienten verglichen. ERGEBNIS: Durch Senkung des intraoperativen mittleren arteriellen Blutdrucks auf 55 mmHg konnte der Gesamtblutverlust um 40% gesenkt werden, der perioperative Transfusionsbedarf um 58%. DISKUSSION: Wie bereits bei Patienten mit Hüft-TEP beschrieben, ist auch bei Tumorpatienten die Anwendung der HPA durch den Erfahrenen ein sicheres und effektives fremdblutsparendes Verfahren

    Comparison of psychometric properties between usual-week and past-week self-reported physical activity questionnaires: A systematic review

    Get PDF
    The aim was to critically appraise the methodological quality of studies and determine the psychometric qualities of Past-week and Usual-week Physical Activity Questionnaires (PAQs). Data sources were obtained from Pubmed and Embase. The eligibility criteria for selecting studies included: 1) at least one psychometric property of PAQs was examined in adults; 2) the PAQs either had a recall period of usual 7-days (Usual-week PAQs) within the past 12months or during the past 7-days (Past-week PAQs); and 3) PAQs were self-administered. Study quality was evaluated using the COSMIN taxonomy and the overall psychometric qualities evaluated using pre-established psychometric criteria. Overall, 45 studies were reviewed to assess the psychometric properties of 21 PAQs with the methodological quality of most studies showing good to excellent ratings. When the relationship between PAQs and other instruments (i.e., convergent validity) were compared between recall methods, Past-week PAQs appeared to have stronger correlations than Usual-week PAQs. For the overall psychometric quality, the Incidental and Planned Exercise Questionnaire for the Usual-week (IPEQ-WA) and for the Past-week (IPEQ-W) had the greatest number of positive ratings. For all included PAQs, very few psychometric properties were assessed with poor ratings for the majority of the overall qualities of psychometric properties indicating the limitation of current PAQs. More research that covers a greater spectrum of psychometric properties is required to gain a better understanding of the qualities of current PAQs

    Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

    Full text link
    Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.Comment: 31 pages, 3 figures, 1 table. Includes main text and supporting material. This is the accepted version of the manuscript (the definitive version appeared in Science), with typographical corrections included her

    Electronic structure and magnetic properties of cobalt intercalated in graphene on Ir(111)

    No full text
    Using a combination of photoemission and x-ray magnetic circular dichroism (XMCD), we characterize the growth and the electronic as well as magnetic structure of cobalt layers intercalated in between graphene and Ir(111). We demonstrate that magnetic ordering exists beyond one monolayer intercalation, and determine the Co orbital and spin magnetic moments. XMCD from the carbon edge shows an induced magnetic moment in the graphene layer, oriented antiparallel to that of cobalt. The XMCD experimental data are discussed in comparison to our results of first-principles electronic structure calculations. It is shown that good agreement between theory and experiment for the Co magnetic moments can be achieved when the local-spin-density approximation plus the Hubbard U (LSDA+U) is used

    Large-scale structure of time evolving citation networks

    Full text link
    In this paper we examine a number of methods for probing and understanding the large-scale structure of networks that evolve over time. We focus in particular on citation networks, networks of references between documents such as papers, patents, or court cases. We describe three different methods of analysis, one based on an expectation-maximization algorithm, one based on modularity optimization, and one based on eigenvector centrality. Using the network of citations between opinions of the United States Supreme Court as an example, we demonstrate how each of these methods can reveal significant structural divisions in the network, and how, ultimately, the combination of all three can help us develop a coherent overall picture of the network's shape.Comment: 10 pages, 6 figures; journal names for 4 references fixe

    An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111)

    Get PDF
    We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111), resulting in a lattice mismatched graphene/Ni system. By performing Scanning Tunneling Microscopy (STM) measurements and Density Functional Theory (DFT) calculations, we show that the intercalated Ni layer leads to a pronounced buckling of the graphene film. At the same time an enhanced interaction is measured by Angle-Resolved Photo-Emission Spectroscopy (ARPES), showing a clear transition from a nearly-undisturbed to a strongly-hybridized graphene π\pi-band. A comparison of the intercalation-like graphene system with flat graphene on bulk Ni(111), and mildly corrugated graphene on Ir(111), allows to disentangle the two key properties which lead to the observed increased interaction, namely lattice matching and electronic interaction. Although the latter determines the strength of the hybridization, we find an important influence of the local carbon configuration resulting from the lattice mismatch.Comment: 9 pages, 3 figures, Accepted for publication in Phys. Rev.
    • …
    corecore