8 research outputs found

    The ventral attention network: the mirror of the language network in the right brain hemisphere

    No full text
    International audienceResting-state functional MRI (RfMRI) analyses have identified two anatomically separable fronto-parietal attention networks in the human brain: a bilateral dorsal attention network and a right-lateralised ventral attention network (VAN). The VAN has been implicated in visuospatial cognition and, thus, potentially in the unilateral spatial neglect associated with right hemisphere lesions. Its parietal, frontal and temporal endpoints are thought to be structurally supported by undefined white matter tracts. We investigated the white matter tract connecting the VAN. We used three approaches to study the structural anatomy of the VAN: (a) independent component analysis on RfMRI (50 subjects), defining the endpoints of the VAN, (b) tractography in the same 50 healthy volunteers, with regions of interest defined by the MNI coordinates of cortical areas involved in the VAN used in a seed-based approach and (c) dissection, by Klingler's method, of 20 right hemispheres, for ex vivo studies of the fibre tracts connecting VAN endpoints. The VAN includes the temporoparietal junction and the ventral frontal cortex. The endpoints of the superior longitudinal fasciculus in its third portion (SLF III) and the arcuate fasciculus (AF) overlap with the VAN endpoints. The SLF III connects the supramarginal gyrus to the ventral portion of the precentral gyrus and the pars opercularis. The AF connects the middle and inferior temporal gyrus and the middle and inferior frontal gyrus. We reconstructed the structural connectivity of the VAN and considered it in the context if the pathophysiology of unilateral neglect and right hemisphere awake brain surgery

    Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: an fMRI study

    No full text
    International audienceBackground: Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). Objective: Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. Methods: Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the "Covert" and "Overt" contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. Results: The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (− 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. Conclusion: Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language

    Overt speech feasibility using continuous functional magnetic resonance imaging: Isolation of areas involved in phonology and prosody

    No full text
    CERVOXY CLINInternational audienceTo avoid motion artifacts, almost all speech‐related functional magnetic resonance imagings (fMRIs) are performed covertly to detect language activations. This method may be difficult to execute, especially by patients with brain tumors, and does not allow the identification of phonological areas. Here, we aimed to evaluate overt task feasibility. Thirty‐three volunteers participated in this study. They performed two functional sessions of covert and overt generation of a short sentence semantically linked with a word. Three main contrasts were performed: Covert and Overt for the isolation of language‐activated areas, and Overt > Covert for the isolation of the motor cortical activation of speech. fMRI data preprocessing was performed with and without unwarping, and with and without regression of movement parameters as confounding variables. All types of results were compared to each other. For the Overt contrast, Dice coefficients showed strong overlap between each pair of types of results: 0.98 for the pair with and without unwarping, and 0.9 for the pair with and without movement parameter regression. The Overt > Covert contrast allowed isolation of motor laryngeal activations with high statistical reliability and revealed the right‐lateralized temporal activity related to acoustic feedback. Overt speaking during magnetic resonance imaging induced few artifacts and did not significantly affect the results, allowing the identification of areas involved in primary motor control and prosodic regulation of speech. Unwarping and motion artifact regression in the postprocessing step, seem to not be necessary. Changes in lateralization of cortical activity by overt speech shall be explored before using these tasks for presurgical mapping

    Variability in Imaging Practices and Comparative Cumulative Effective Dose for Neuroblastoma and Nephroblastoma Patients at 6 Pediatric Oncology Centers

    Get PDF
    International audienceThe purpose of this study was to estimate the cumulative effective dose (CED) from diagnosis and posttherapy computed tomographic (CT) scans performed on children treated for neuroblastoma or nephroblastoma (Wilms tumor) and to examine the different imaging practices used in 6 regional pediatric oncology centers between January 2010 and December 2013. We analyzed retrospectively the CT scan acquisition data in children aged 10 years or younger at diagnosis. The use of nonionizing imaging modalities was reported. The CT examinations of 129 children, with a mean age at diagnosis of 36 months, treated for 66 neuroblastomas and 63 nephroblastomas, were analyzed. The mean follow-up period was 28 months (minimum, 8 months, maximum, 41 mo). There were 600 CT scans, with a total of 1039 acquisitions. The mean CED from CT scans was 27 mSv (minimum=18.25, maximum=45). Abdominal CT examinations contributed 85% of the total CED. A median of 4.6 CT scans, 10.3 sonograms, and 0.4 magnetic resonance imaging examinations per child were performed. Our results suggest a reduction in radiation exposure but variability in the imaging modality choice and acquisition protocols. We emphasize the need for consensus and standardization in oncologic pediatric imaging procedures. When feasible, we encourage the substitution of nonionizing examinations for CT.</p

    Resting‐state functional magnetic resonance imaging versus task‐based activity for language mapping and correlation with perioperative cortical mapping

    No full text
    International audienceINTRODUCTION: Preoperative language mapping using functional magnetic resonance imaging (fMRI) aims to identify eloquent areas in the vicinity of surgically resectable brain lesions. fMRI methodology relies on the blood-oxygen-level-dependent (BOLD) analysis to identify brain language areas. Task-based fMRI studies the BOLD signal increase in brain areas during a language task to identify brain language areas, which requires patients' cooperation, whereas resting-state fMRI (rsfMRI) allows identification of functional networks without performing any explicit task through the analysis of the synchronicity of spontaneous BOLD signal oscillation between brain areas. The aim of this study was to compare preoperative language mapping using rsfMRI and task fMRI to cortical mapping (CM) during awake craniotomies.METHODS: Fifty adult patients surgically treated for a brain lesion were enrolled. All patients had a presurgical language mapping with both task fMRI and rsfMRI. Identified language networks were compared to perioperative language mapping using electric cortical stimulation.RESULTS: Resting-state fMRI was able to detect brain language areas during CM with a sensitivity of 100% compared to 65.6% with task fMRI. However, we were not able to perform a specificity analysis and compare task-based and rest fMRI with our perioperative setting in the current study. In second-order analysis, task fMRI imaging included main nodes of the SN and main areas involved in semantics were identified in rsfMRI.CONCLUSION: Resting-state fMRI for presurgical language mapping is easy to implement, allowing the identification of functional brain language network with a greater sensitivity than task-based fMRI, at the cost of some precautions and a lower specificity. Further study is required to compare both the sensitivity and the specificity of the two methods and to evaluate the clinical value of rsfMRI as an alternative tool for the presurgical identification of brain language areas.© 2019 The Authors. Brain and Behavior published by Wiley Periodicals, Inc

    Brain Activity during Mental Imagery of Gait Versus Gait-Like Plantar Stimulation: A Novel Combined Functional MRI Paradigm to Better Understand Cerebral Gait Control

    Get PDF
    International audienceHuman locomotion is a complex sensorimotor behavior whose central control remains difficult to explore using neuroimaging method due to technical constraints, notably the impossibility to walk with a scanner on the head and/or to walk for real inside current scanners. The aim of this functional Magnetic Resonance Imaging (fMRI) study was to analyze interactions between two paradigms to investigate the brain gait control network: (1) mental imagery of gait, and (2) passive mechanical stimulation of the plantar surface of the foot with the Korvit boots. The Korvit stimulator was used through two different modes, namely an organized ("gait like") sequence and a destructured (chaotic) pattern. Eighteen right-handed young healthy volunteers were recruited (mean age, 27 ± 4.7 years). Mental imagery activated a broad neuronal network including the supplementary motor area-proper (SMA-proper), pre-SMA, the dorsal premotor cortex, ventrolateral prefrontal cortex, anterior insula, and precuneus/superior parietal areas. The mechanical plantar stimulation activated the primary sensorimotor cortex and secondary somatosensory cortex bilaterally. The paradigms generated statistically common areas of activity, notably bilateral SMA-proper and right pre-SMA, highlighting the potential key role of SMA in gait control. There was no difference between the organized and chaotic Korvit sequences, highlighting the difficulty of developing a walking-specific plantar stimulation paradigm. In conclusion, this combined-fMRI paradigm combining mental imagery and gait-like plantar stimulation provides complementary information regarding gait-related brain activity and appears useful for the assessment of high-level gait control

    Syndrome

    No full text
    corecore