2,083 research outputs found

    On the masses of OJ287 black holes

    Full text link
    Two multifrequency campaigns were carried out on OJ287 in 2005: in April when it was in its pre-outburst state, and in November, during the main 12 yr cycle outburst. The wavelength coverage was from radio to X-rays. In the optical-to-UV range the differential spectrum between the observations has a bremsstrahlung spectral shape, consistent with gas at 3×105K3 \times 10^{5}K temperature. Our result supports the hydrogen column density of the OJ287 host galaxy of 9.3×1020cm2\sim9.3\times 10^{20} cm^{-2}, the average value found by Gosh & Soundararajaperumal. The 3×105K3 \times 10^{5}K bremsstrahlung radiation was predicted in the binary black hole model of OJ287, and it arises from a hot bubble of gas which is torn off the accretion disc by the impact of the secondary. As this radiation is not Doppler boosted, the brightness of the outburst provides an estimate for the mass of the secondary black hole, 1.4×108\sim1.4\times10^{8} solar mass. In order to estimate the mass of the primary black hole, we ask what is the minimum mass ratio in a binary system which allows the stability of the accretion disc. By using particle simulations, we find that the ratio is 1.3×102\sim1.3\times10^{2}. This makes the minimum mass of the primary 1.8×1010\sim1.8\times10^{10} solar mass, in agreement with the mass determined from the orbit solution, 1.84×10101.84 \times 10^{10} solar mass. With this mass value and the measured K-magnitude of the bulge of the host galaxy of OJ287, the system lies almost exactly on the previously established correlation in the black hole mass vs. K-magnitude diagramme. It supports the extension of this correlation to brighter magnitudes and to more massive black holes than has been done previously.Comment: to appear in Mon.Not.R.Astron.So

    UBVRI photopolarimetry of the long period eclipsing AM Herculis binary V1309

    Get PDF
    We report simultaneous UBVRI photo-polarimetric observations of the long period (7.98 h) AM Her binary V1309 Ori. The length and shape of the eclipse ingress and egress varies from night to night. We suggest this is due to the variation in the brightness of the accretion stream. By comparing the phases of circular polarization zero-crossovers with previous observations, we confirm that V1309 Ori is well synchronized, and find an upper limit of 0.002 percent for the difference between the spin and orbital periods. We model the polarimetry data using a model consisting of two cyclotron emission regions at almost diametrically opposite locations, and centered at colatitude 35 (deg) and 145 (deg) on the surface of the white dwarf. We also present archive X-ray observations which show that the negatively polarised accretion region is X-ray bright.Comment: 11 pages, 12 figures (2 colour), Fig1 and Fig 4 are in lower resolution than in original paper, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Baltic Ecological Recycling Agriculture and Society (BERAS project) - a case of Juva milk system

    Get PDF
    The aim of the study was to determine the potential, impact and prerequisites of localization and enhanced recycling in a rural food system, illustrated by the case of Juva milk. An interdisciplinary scenario based on the increase of local, organic milk to 50 % of milk comsumption was created and the sustainability was compared, on the basis of the statistics and data collected from the actors, with the present milk system

    The chaotic behavior of the black hole system GRS 1915+105

    Get PDF
    A modified non-linear time series analysis technique, which computes the correlation dimension D2D_2, is used to analyze the X-ray light curves of the black hole system GRS 1915+105 in all twelve temporal classes. For four of these temporal classes D2D_2 saturates to 45\approx 4-5 which indicates that the underlying dynamical mechanism is a low dimensional chaotic system. Of the other eight classes, three show stochastic behavior while five show deviation from randomness. The light curves for four classes which depict chaotic behavior have the smallest ratio of the expected Poisson noise to the variability (<0.05 < 0.05) while those for the three classes which depict stochastic behavior is the highest (>0.2 > 0.2). This suggests that the temporal behavior of the black hole system is governed by a low dimensional chaotic system, whose nature is detectable only when the Poisson fluctuations are much smaller than the variability.Comment: Accepted for publication in Astrophysical Journa

    Leeway for the loyal: a model of employee discretion

    Get PDF
    This article examines the factors underlying task discretion from an economist's perspective. It argues that the key axis for understanding discretion is the trade-off between the positive effects of discretion on potential output per employee and the negative effects of greater leeway on work effort. In empirical analysis using matched employer-employee data, it is shown that discretion is strongly affected by the level of employee commitment. In addition, discretion is generally greater in high-skilled jobs, although not without exceptions, and lower where employees are under-skilled. Homeworking and flexitime policies raise employee discretion. The impact of teamworking is mixed. In about half of cases team members do not jointly decide about work matters, and the net effect of teams on task discretion in these cases is negative. In other cases, where team members do decide matters jointly, the impact is found to be neutral according to employees' perceptions, or positive according to managers' perceptions. There are also significant and substantial unobserved establishment-level factors which affect task discretion

    Measuring Black Hole Spin in OJ287

    Full text link
    We model the binary black hole system OJ287 as a spinning primary and a non-spinning secondary. It is assumed that the primary has an accretion disk which is impacted by the secondary at specific times. These times are identified as major outbursts in the light curve of OJ287. This identification allows an exact solution of the orbit, with very tight error limits. Nine outbursts from both the historical photographic records as well as from recent photometric measurements have been used as fixed points of the solution: 1913, 1947, 1957, 1973, 1983, 1984, 1995, 2005 and 2007 outbursts. This allows the determination of eight parameters of the orbit. Most interesting of these are the primary mass of 1.841010M1.84\cdot 10^{10} M_\odot, the secondary mass 1.46108M1.46\cdot 10^{8} M_\odot, major axis precession rate 39.139^\circ.1 per period, and the eccentricity of the orbit 0.70. The dimensionless spin parameter is 0.28±0.010.28\:\pm\:0.01 (1 sigma). The last parameter will be more tightly constrained in 2015 when the next outburst is due. The outburst should begin on 15 December 2015 if the spin value is in the middle of this range, on 3 January 2016 if the spin is 0.25, and on 26 November 2015 if the spin is 0.31. We have also tested the possibility that the quadrupole term in the Post Newtonian equations of motion does not exactly follow Einstein's theory: a parameter qq is introduced as one of the 8 parameters. Its value is within 30% (1 sigma) of the Einstein's value q=1q = 1. This supports the nohairtheoremno-hair theorem of black holes within the achievable precision. We have also measured the loss of orbital energy due to gravitational waves. The loss rate is found to agree with Einstein's value with the accuracy of 2% (1 sigma).Comment: 12 pages, 4 figures, IAU26

    On the Nature of X-ray Variability in Ark 564

    Full text link
    We use data from a recent long ASCA observation of the Narrow Line Seyfert 1 Ark 564 to investigate in detail its timing properties. We show that a thorough analysis of the time series, employing techniques not generally applied to AGN light curves, can provide useful information to characterize the engines of these powerful sources.We searched for signs of non-stationarity in the data, but did not find strong evidences for it. We find that the process causing the variability is very likely nonlinear, suggesting that variability models based on many active regions, as the shot noise model, may not be applicable to Ark 564. The complex light curve can be viewed, for a limited range of time scales, as a fractal object with non-trivial fractal dimension and statistical self-similarity. Finally, using a nonlinear statistic based on the scaling index as a tool to discriminate time series, we demonstrate that the high and low count rate states, which are indistinguishable on the basis of their autocorrelation, structure and probability density functions, are intrinsically different, with the high state characterized by higher complexity.Comment: 13 pages, 13 figures, accepted for publication in A&

    Measuring the spin of the primary black hole in OJ287

    Full text link
    The compact binary system in OJ287 is modelled to contain a spinning primary black hole with an accretion disk and a non-spinning secondary black hole. Using Post Newtonian (PN) accurate equations that include 2.5PN accurate non-spinning contributions, the leading order general relativistic and classical spin-orbit terms, the orbit of the binary black hole in OJ287 is calculated and as expected it depends on the spin of the primary black hole. Using the orbital solution, the specific times when the orbit of the secondary crosses the accretion disk of the primary are evaluated such that the record of observed outbursts from 1913 up to 2007 is reproduced. The timings of the outbursts are quite sensitive to the spin value. In order to reproduce all the known outbursts, including a newly discovered one in 1957, the Kerr parameter of the primary has to be 0.28±0.080.28 \pm 0.08. The quadrupole-moment contributions to the equations of motion allow us to constrain the `no-hair' parameter to be 1.0±0.31.0\:\pm\:0.3 where 0.3 is the one sigma error. This supports the `black hole no-hair theorem' within the achievable precision. It should be possible to test the present estimate in 2015 when the next outburst is due. The timing of the 2015 outburst is a strong function of the spin: if the spin is 0.36 of the maximal value allowed in general relativity, the outburst begins in early November 2015, while the same event starts in the end of January 2016 if the spin is 0.2Comment: 12 pages, 6 figure
    corecore