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ABSTRACT

A modified nonlinear time series analysis technique, which computes the correlation dimension D2, is used to
analyze the X-ray light curves of the black hole system GRS 1915+105 in all 12 temporal classes. For four of
these temporal classes, D2 saturates to �4–5, which indicates that the underlying dynamical mechanism is a
low-dimensional chaotic system. Of the other eight classes, three show stochastic behavior, while five show
deviation from randomness. The light curves for four classes that depict chaotic behavior have the smallest ratios
of the expected Poisson noise to the variability (<0.05), while those for the three classes that depict stochastic
behavior are the highest (>0.2). This suggests that the temporal behavior of the black hole system is governed
by a low-dimensional chaotic system whose nature is detectable only when the Poisson fluctuations are much
smaller than the variability.

Subject headings: accretion, accretion disks — black hole physics — X-rays: binaries —
X-rays: individual (GRS 1915+105)

1. INTRODUCTION

Black hole X-ray binaries are variable on a wide range of
timescales, from months to milliseconds. A detailed analysis
of their temporal variability is crucial to the understanding of
the geometry and structure of these high-energy sources. Such
studies may eventually be used to test the relativistic nature of
these sources and to understand the physics of the accretion
process. The variability in different energy bands is generally
quantified by computing the power spectrum, which is the
amplitude squared of the Fourier transform. The power spectra
give information about the characteristic frequencies of the
system, which show up as either breaks or near-Gaussian
peaks, i.e., quasi-periodic oscillation (QPO) in the spectra
(e.g., Belloni et al. 2001; Tomsick & Kaaret 2001; Rodriguez
et al. 2002). The shapes of the power spectra, combined with
the observed frequency-dependent time lags between different
energy bands, have put constraints on the radiative mecha-
nisms and geometry of emitting regions (e.g., Nowak et al.
1999; Misra 2000; Cui 1999; Poutanen & Fabian 1999;
Chakrabarti & Manickam 2000; Nobili et al. 2001).

These results are based on the response of the system
to temporal variations whose origin is not clear. Important
insight into the origin can be obtained by the detection and
quantification of the possible nonlinear behavior of the fluc-
tuations. For example, the presence of stochastic fluctuations
would favor X-ray variations driven by variations of some
external parameters (such as the mass accretion rate) or the
possibility that active flares occur randomly. On the other hand,
if the fluctuations can be described as a deterministic, chaotic
system, then inner-disk instability or coherent flaring activity
models will be the likely origin. A quantitative description
of the temporal behavior can also be compared with time-
dependent numerical simulations of the accretion process and
will help examine the physical relevance of these simulations.

The non-Gaussian and nonzero skewness values of the tem-
poral variation of the black hole system Cygnus X-1 suggested
that the variations are nonlinear in nature (Thiel et al. 2001;
Timmer et al. 2000; Maccarone & Coppi 2002). More rigorous
tests were applied to the active galactic nucleus (AGN) Ark
564 (Gliozzi et al. 2002), which also suggested nonlinear
behavior. Nonlinear time series (NLTS) analysis seems to be
the most convenient tool for checking whether the origin of
the variability is chaotic, stochastic, or a mixture of the two,
and it has been adopted in several disciplines to study com-
plex systems (e.g., the human brain, weather) and predict their
immediate future (Schreiber 1999). This technique has also
been used to analyze X-ray data of astrophysical sources.
Based on an NLTS analysis of EXOSAT data, Voges et al.
(1987) claimed that the X-ray pulsar Her X-1 was a low-
dimensional chaotic system. However, Norris & Matilsky
(1989) pointed out problems with that analysis, since the
source has a strong periodicity and the data analyzed had a
low signal-to-noise ratio. Lehto et al. (1993) used the NLTS
technique to analyze EXOSAT light curves of several AGNs
and found that only one, NGC 4051, showed signs of low-
dimensional chaos. A similar analysis on the noise-filtered
Tenma satellite data of Cyg X-1 suggested that the source may
be a low-dimensional chaotic system with large intrinsic noise
(Unno et al. 1990). These analyses were hampered by a small
number of data points (P1000) in the light curve and/or noise.
Hence, the reported detection of low-dimensional chaos was
only possible by rather subjective comparison of the results of
the data analysis with those from simulated data of chaotic
systems with noise.

The Galactic microquasar GRS 1915+105 is a highly var-
iable black hole system. It shows a wide range of variability
(Chen et al. 1997; Paul et al. 1997; Belloni et al. 1997), which
required Belloni et al. (2000) to classify its behavior into no
fewer than 12 temporal classes. In this work, our motivation
is to determine the temporal property of this source by using
a modified NLTS analysis for each of these 12 classes. The
different kinds of variability and its brightness (the average
RXTE PCA count rate ranges from 5000 to 32,000 counts s�1)
make this source ideal ones for the detection of chaotic
behavior.
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In the next section we describe the technique used to de-
termine the correlation dimension. The results of the analysis
are presented in x 3, while in x 4 the work is summarized and
discussed.

2. THE NONLINEAR TIME-SERIES ANALYSIS

The algorithm normally employed in this analysis (Grassberger
& Procaccia 1983) aims at creating an artificial (or pseudo-)
space of dimension M with delay vectors constructed by split-
ting a scalar time series s(t) with delay time � as

x(t) ¼ s(t); s(t þ �); : : : ; s t þ M � 1ð Þ�ð Þ½ �: ð1Þ

The correlation function is the average number of data
points within a distance R from a data point,

CM (R) � lim
N!1

1

N (N � 1)

XN

i

XN

j; j6¼i

H R� xi � xj
�� ��� �

; ð2Þ

where xj is the position vector of a point belonging to the
attractor in the M-dimensional space, N is the number of
reconstructed vectors, and H is the Heaviside step function.
The fractional dimension D2(M ) is defined as

D2 � lim
R!0

d logCM (R)

d log (R)
ð3Þ

and is essentially the scaling index of CM (R) variation with R.
The fractal dimension D2(M ) can be used to differentiate
between different temporal behavior, since for an uncorrelated
stochastic system,D2 � M ,while for a chaotic system,D2(M ) �
constant for M greater than a certain dimension Mmax.

For a finite-duration light curve, there are two complica-
tions that hinder the successful computation of D2(M ). First,
for small values of R, CM (R) is of order unity, and the result
there would be dominated by Poisson noise. Second, for large
values of R, CM (R) will saturate to the total number of data
points. Usually, these two effects are avoided in the logCM (R)
versus log R plot, and the slope D2 is obtained from the linear
part of the curve. However, such an exercise is subjective,
especially for high dimensions. Here, we use a numerical
scheme to compute D2, which takes into account the above
effects and at the same time optimizes the maximum use of the
available data. The details of the method and several tests of
its validity will be presented elsewhere (R. Misra et al. 2004,
in preparation). Briefly, the technique involves converting the
original light curve to a uniform deviate and redefining the
correlation function CM (R) as the average number of data
points within an M cube (instead of an M sphere) of length R
around a data point. Only those M cubes are considered that
are within the embedding space, ensuring that there are no
edge effects due to limited data points. This imposes a max-
imum value of R < Rmax for which CM (R) can be computed.
To avoid the Poisson noise–dominated region, only results
from R greater than an Rmin are taken into consideration, such
that the average C(Rmin) > 1, where the Poisson noise would
approximately be 1= Ncð Þ1=2. Typically CM (R) is computed for
10 different values of R between Rmin and Rmax, the logarith-
mic slope for each point is computed, and the average is taken
to be D2(M ). The error on D2(M ) is estimated to be the mean
standard deviation around this average. It should be noted that
there often exists a critical Mcr for which Rmax � Rmin, and no

significant result can then be obtained for M > Mcr. Figure 1a
shows the D2(M ) curve for a time series generated from
random numbers and for the well-known analytical low-
dimensional chaotic system, the Lorenz system. The total
number of data points used to generate both curves is 30,000,
and the number of random centers used is Nc ¼ 2000. As
expected, the D2 plot for the random data is consistent with
the D2 ¼ M curve, while the plot for the Lorenz system shows
significant deviation and saturates at M � 3 to a D2 � 2,
which is close to the known value of 2.04. The random data
and the low-dimensional chaotic system can clearly be dis-
tinguished in this scheme.

3. RESULTS

The temporal properties of GRS 1915+105 have been
classified into 12 different classes by Belloni et al. (2000),
who also present the observational dates and identification
number of the RXTE data they had used to make the classi-
fication. Here, we have chosen a representative data set for
each class and extracted a few continuous data streams
(�3000 s long) from it. The observation IDs (ObsIDs) of the
data used in this work are tabulated in Table 1. The light
curves were generated with a resolution of 0.1 s, resulting in
�30,000 data points for each of them and �1500 counts per
bin. Light curves with finer time resolution are Poisson noise–
dominated, while larger binning gives too few data points.
In general, D2(M ) is proportional to � when � is small and

saturates (i.e., it is nearly invariant) for � greater than a critical
value, and it is this saturated value that is the correct estimate
of D2(M ). As an example, the D2(M ) curves for different
values of � are plotted in Figure 1b, where it can be seen that
the curve is similar within error bars for � ¼ 15, 25, and 100 s.
For all the data analyzed here, the critical � < 5–20 s, and
hence the saturated curve (typically for � � 50 s) is considered.

Fig. 1.—(a) D2 vs. M for random points (circles) and for a Lorenz system
(squares). For both curves the number of points used is 30,000, and the
number of centers used in the computation is 2000. The straight line represents
the D2 ¼ M case, which is the expected result for random variation. (b) D2 vs.
M for GRS 1915+105 data obtained during class � for three different values
of the delay time: � ¼ 15 s (triangles), 25 s (squares), and 100 s (circles).
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It has been verified that the D2(M ) curves for two separate
light curves for the same class are similar to within the error
bars. This shows that, as expected, the temporal behavior of
the system is more or less stationary for the same class.
Hence, such curves can be averaged to obtain a statistically
more significant result.

Figure 2 shows the D2(M ) curves for seven temporal classes.
For four classes (k, �, �, and �) the curves show clear devia-
tion from random behavior. For k and � there is saturation of
D2 � 5 forM > 8. For � and �, the increase in D2 is less than 1
when M increases from 8 to 15. Thus, these classes can be
classified unambiguously as chaotic systems with correlation
dimension less than 5, while the behavior of the class � is

identical to a stochastic light curve. Classes � and � show
some deviation from stochastic behavior, and hence this be-
havior, which is also seen in classes �, 	, and 
, is named
‘‘nonstochastic’’ in this work. As discussed below, these
classes may be inferred to be low-dimensional chaotic systems
based on comparison with results from simulated data of cha-
otic systems with additional noise. Similar comparisons were
made to infer the chaotic behavior of Cyg X-1 (Unno et al.
1990) and NGC 4051 (Lehto et al. 1993). We show in the last
column of Table 1 the classification of all 12 classes into one

Fig. 2.— D2 vs. M for GRS 1915+105 data obtained during seven temporal
classes. Classes �, �, �, and k exhibit chaotic behavior. Class � is stochastic,
while � and � show some departure from stochastic behavior.

Fig. 3.—Effect of Poisson noise on the analysis using simulated rescaled
Lorenz system data with Poisson noise. The D2 vs. M curve for a Lorenz
system is shown by circles, while the squares (triangles) are curves for
rescaled Lorenz system data corresponding to the expected Poisson noise in
the � (�) class of GRS 1915+105.

TABLE 1

Observation Table

ObsID

(1)

Class

(2)

Sh i
(3)

rms

(4)

PNh i
(5)

PNh i/rms

(6)

Behavior

(7)

10408-01-10-00....... � 1917 1016 43.8 0.04 C

20402-01-37-01....... k 1493 1015 38.6 0.04 C

20402-01-33-00....... � 1311 800 36.2 0.04 C

10408-01-08-00....... � 3026 999 55 0.06 C

20402-01-45-02....... � 1740 678 41.7 0.06 NS

10408-01-40-00....... 	 1360 462 36.9 0.08 NS

20402-01-03-00....... � 1258 440 35.5 0.08 NS

20187-02-01-00....... � 582 244 24.1 0.10 NS

10408-01-17-00....... 
 1397 377 37.4 0.10 NS

20402-01-56-00....... � 1848 185 43.0 0.23 S

10408-01-22-00....... � 981 118 31.3 0.27 S

10408-01-12-00....... � 1073 118 32.7 0.28 S

Notes.—Col. (1): RXTE ObsID from which the data has been extracted. Col. (2): Temporal class of
the system in the classification given by Belloni et al. (2000). Col. (3): The average counts in the light
curve Sh i. Col. (4): The rms variation in the light curve rms . Col. (5): The expected Poisson noise
variation, PNh i � Sh i1=2. Col. (6): The ratio of the expected Poisson noise to the actual rms variation.
Col. (7): The behavior of the system, as derived from the D2 vs. M curves (C: chaotic behavior;
NS: Nonstochastic behavior [i.e., the D2 vs. M curve deviates slightly from random or stochastic
behavior]; S: stochastic or random behavior).
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of three categories: chaotic, nonstochastic, or stochastic. We
list in Table 1 the average counts Sh i, the rms variation, the
expected Poisson noise PNh i � Sh i1=2, and the ratio of the
expected Poisson noise to the actual rms value. It can be seen
that there is a strong correlation between the inferred behavior
of the system and the ratio of the expected Poisson noise to the
rms values. This indicates that Poisson noise is affecting the
analysis. To estimate the effect of Poisson noise, we consider
the Lorenz system points SL(t) and rescale it by SLR ¼
ASL(t)þ B. A light curve is then simulated using SLR from the
corresponding Poisson noise distributions. The constants A and
B were chosen such that the simulated light curve had the same
average count and rms variation as the two extreme cases for
the GRS 1915+105 data for the � and � classes. The results
of the NLTS analysis are shown in Figure 3, where it can
be seen that even for the �-like case in which the ratio of
the expected Poisson noise to rms variation is only 4%, the
D2 versus M curve saturates at a higher value than that of the
original no-noise data points. This implies that the correlation
dimension of �4 inferred from the analysis of the classes
showing chaotic behavior (Fig. 2) is an overestimation due
to the inherent Poisson noise in the data. For larger Poisson
noise fractions, the curve no longer saturates, and it becomes
qualitatively similar to that obtained for the nonstochastic
case.

4. DISCUSSION

The saturation of the correlation dimension D2 � 4–5 for
four of the temporal classes clearly indicates that the underlying
dynamic mechanism that governs the variability of the black
hole system is a low-dimensional, chaotic one. As indicated by
simulations of the Lorenz system with noise, the effect of
Poisson noise in the data is to increase the D2 values. Hence,
the real dimension of the system is probably smaller than the
D2 � 4–5 that is obtained here. In fact, it is possible that the
temporal behavior of the black hole system is always governed
by a low-dimensional, chaotic system but is undetectable when
Poisson noise affects the analysis.

Alternatively, there may be a stochastic component to the
variability that dominates for certain temporal classes. The
two scenarios may be distinguished, and better quantitative
estimates of the correlation dimension may be obtained, by
appropriate noise filtering of the data and/or appropriate av-
eraging of the different light curves. Much longer (�30,000 s
long) continuous data streams sampled at 1 s resolution would
decrease Poisson noise and hence provide a better quantitative
measure of D2. However, such long data streams are currently
not available, and merging noncontinuous light curves will

require sophisticated gap-filling techniques that might give
rise to spurious results.
The variability of GRS 1915+105 can be interpreted as

being the manifestation of transitions between three spectral
states (Belloni et al. 2000), one of which (the so-called soft
state) is a long-term canonical state observed in other black
hole systems like Cygnus X-1, which do not show such high-
amplitude variability. It is attractive to identify these spectral
states as fixed points, which for GRS 1915+105 become un-
stable, giving rise to the observed chaotic behavior, which
may also account for the ringlike movement of the system
in color-color space (Vilhu & Nevalainen 1998). The above
hypothesis may be verified by future characterization of the
chaos in GRS 1915+105. Note that GRS 1915+105 spends
most of its time in the �-class, whose variability is similar to
that observed in other black hole systems like Cygnus X-1.
However, as shown in this work, Poisson noise affects the
analysis for the �-class, and the D2(M ) values reflect sto-
chastic behavior. This may be the reason why earlier different
nonlinear analysis of Cygnus X-1 data, while showing non-
linearity (Timmer et al. 2000; Thiel et al. 2001), did not
conclusively reveal chaotic behavior.
The identification of the temporal behavior of the black hole

system as chaotic has opened a new window toward the un-
derstanding of the origin and nature of their variability. The
present analysis can be extended to characterize the chaotic
behavior. Using the minimum required phase-space dimen-
sion, the data can be projected into different two-dimensional
planes, which will reveal the structure of the attractor and help
to identify any possible centers of instability in the system.
Further, dynamical invariants, for example, the full Lyapunov
spectrum and multifractal dimensions, can also be computed.
Recently, Winters et al. (2003) have studied and quantified the
chaotic flow in magnetohydrodynamic simulations of the mass
accretion processes that are believed to be happening in black
hole systems. The measured chaos parameters, such as the
largest Lyapunov exponent, for such simulations can be com-
pared with those obtained from the light curve of black hole
systems to validate such simulations and enhance our under-
standing of these systems. Note that such analysis can practi-
cally be applied only after the identification of the minimum
phase-space dimension, which in turn usually requires the
computation of D2(M ).
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