1,425 research outputs found

    The Nature and Origin of Low-Redshift O VI Absorbers

    Full text link
    The O VI ion observed in quasar absorption line spectra is the most accessible tracer of the cosmic metal distribution in the low redshift (z<0.5) intergalactic medium (IGM). We explore the nature and origin of O VI absorbers using cosmological hydrodynamic simulations including galactic outflows. We consider the effects of ionization background variations, non-equilibrium ionization and cooling, uniform metallicity, and small-scale (sub-resolution) turbulence. Our main results are 1) IGM O VI is predominantly photo-ionized with T= 10^(4.2+/-0.2) K. A key reason for this is that O VI absorbers preferentially trace over-enriched regions of the IGM at a given density, which enhances metal-line cooling such that absorbers can cool within a Hubble time. As such, O VI is not a good tracer of the WHIM. 2) The predicted O VI properties fit observables only if sub-resolution turbulence is added. The required turbulence increases with O VI absorber strength such that stronger absorbers arise from more recent outflows with turbulence dissipating on the order of a Hubble time. The amount of turbulence is consistent with other examples of turbulence observed in the IGM and galactic halos. 3) Metals traced by O VI and H I do not trace exactly the same baryons, but reside in the same large-scale structure. Observed alignment statistics are reproduced in our simulations. 4) Photo-ionized O VI traces gas in a variety of environments, and is not directly associated with the nearest galaxy, though is typically nearest to ~0.1L* galaxies. Weaker O VI components trace some of the oldest cosmic metals. 5) Very strong absorbers are more likely to be collisionally ionized, tracing more recent enrichment (<2 Gyr) within or near galactic halos.Comment: 33 pages, 18 figures, accepted to MNRAS. Two new figures adde

    Gas Accretion Traced in Absorption in Galaxy Spectroscopy

    Full text link
    The positive velocity shift of absorption transitions tracing diffuse material observed in a galaxy spectrum is an unambiguous signature of gas flow toward the host system. Spectroscopy probing, e.g., NaI D resonance lines in the rest-frame optical or MgII and FeII in the near-ultraviolet is in principle sensitive to the infall of cool material at temperatures ~ 100-10,000 K anywhere along the line of sight to a galaxy's stellar component. However, secure detections of this redshifted absorption signature have proved challenging to obtain due to the ubiquity of cool gas outflows giving rise to blueshifted absorption along the same sightlines. In this chapter, we review the bona fide detections of this phenomenon. Analysis of NaI D line profiles has revealed numerous instances of redshifted absorption observed toward early-type and/or AGN-host galaxies, while spectroscopy of MgII and FeII has provided evidence for ongoing gas accretion onto >5% of luminous, star-forming galaxies at z ~ 0.5-1. We then discuss the potentially ground-breaking benefits of future efforts to improve the spectral resolution of such studies, and to leverage spatially-resolved spectroscopy for new constraints on inflowing gas morphology.Comment: 21 pages, 7 figures. Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    QSO Absorption Systems Detected in Ne VIII: High-Metallicity Clouds with a Large Effective Cross Section

    Full text link
    Using high resolution, high signal-to-noise ultraviolet spectra of the z = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of NeVIII+OVI absorption line systems at z(abs) =0.68381, 0.70152, 0.72478. In addition to NeVIII and OVI, absorption lines from multiple ionization stages of oxygen (OII, OIII, OIV) are detected and are well-aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T ~ 10^{5.7} K) that produces NeVIII and OVI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z_{solar} to supersolar. The cool (~10^{4} K) phases have densities n_{H} ~ 10^{-4} cm^{-3} and small sizes (< 4kpc); these cool clouds are likely to expand and dissipate, and the NeVIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The NeVIII redshift density, dN/dz = 7^{+7}_{-3}, requires a large number of these clouds for every L > 0.1L* galaxy and a large effective absorption cross section (>~ 100 kpc), and indeed, we find a star forming ~L* galaxy at the redshift of the z(abs)=0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these NeVIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.Comment: Final published version (Astrophysical Journal

    The TAOS Project: Upper Bounds on the Population of Small KBOs and Tests of Models of Formation and Evolution of the Outer Solar System

    Get PDF
    We have analyzed the first 3.75 years of data from TAOS, the Taiwanese American Occultation Survey. TAOS monitors bright stars to search for occultations by Kuiper Belt Objects (KBOs). This dataset comprises 5e5 star-hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this dataset. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan & Sari (2005), Kenyon & Bromley (2004), Benavidez & Campo Bagatin (2009), and Fraser (2009). A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is comprised of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution.Comment: 18 pages, 16 figures, Aj submitte

    Gas Accretion via Lyman Limit Systems

    Full text link
    In cosmological simulations, a large fraction of the partial Lyman limit systems (pLLSs; 16<log N(HI)<17.2) and LLSs (17.2log N(HI)<19) probes large-scale flows in and out of galaxies through their circumgalactic medium (CGM). The overall low metallicity of the cold gaseous streams feeding galaxies seen in these simulations is the key to differentiating them from metal rich gas that is either outflowing or being recycled. In recent years, several groups have empirically determined an entirely new wealth of information on the pLLSs and LLSs over a wide range of redshifts. A major focus of the recent research has been to empirically determine the metallicity distribution of the gas probed by pLLSs and LLSs in sizable and representative samples at both low (z2) redshifts. Here I discuss unambiguous evidence for metal-poor gas at all z probed by the pLLSs and LLSs. At z<1, all the pLLSs and LLSs so far studied are located in the CGM of galaxies with projected distances <100-200 kpc. Regardless of the exact origin of the low-metallicity pLLSs/LLSs, there is a significant mass of cool, dense, low-metallicity gas in the CGM that may be available as fuel for continuing star formation in galaxies over cosmic time. As such, the metal-poor pLLSs and LLSs are currently among the best observational evidence of cold, metal-poor gas accretion onto galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    In vitro and in vivo effects of Pelargonium sidoides DC. root extract EPs® 7630 and selected constituents against SARS-CoV-2 B.1, Delta AY.4/AY.117 and Omicron BA.2

    Get PDF
    The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (−)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry

    Response to novel objects and foraging tasks by common marmoset (Callithrix Jacchus) female Pairs

    Get PDF
    Many studies have shown that environmental enrichment can significantly improve the psychological well-being of captive primates, increasing the occurrence of explorative behavior and thus reducing boredom. The response of primates to enrichment devices may be affected by many factors such as species, sex, age, personality and social context. Environmental enrichment is particularly important for social primates living in unnatural social groupings (i.e. same-sex pairs or singly housed animals), who have very few, or no, benefits from the presence of social companions in addition to all the problems related to captivity (e.g. increased inactivity). This study analyses the effects of enrichment devices (i.e. novel objects and foraging tasks) on the behavior of common marmoset (Callithrix jacchus) female pairs, a species that usually lives in family groups. It aims to determine which aspects of an enrichment device are more likely to elicit explorative behaviors, and how aggressive and stress-related behaviors are affected by its presence. Overall, the marmosets explored foraging tasks significantly longer than novel objects. The type of object, which varied in size, shape and aural responsiveness (i.e. they made a noise when the monkey touched them), did not affect the response of the monkeys, but they explored objects that were placed higher in the enclosure more than those placed lower down.Younger monkeys were more attracted to the enrichment devices than the older ones. Finally, stress-related behavior (i.e. scratching) significantly decreased when the monkeys were presented with the objects; aggressive behavior as unaffected. This study supports the importance of environmental enrichment for captive primates and shows that in marmosets its effectiveness strongly depends upon the height of the device in the enclosure and the presence of hidden food. The findings can be explained ifone considers the foraging behavior of wild common marmosets. Broader applications for the research findings are suggested in relation to enrichment

    Observational Diagnostics of Gas Flows: Insights from Cosmological Simulations

    Full text link
    Galactic accretion interacts in complex ways with gaseous halos, including galactic winds. As a result, observational diagnostics typically probe a range of intertwined physical phenomena. Because of this complexity, cosmological hydrodynamic simulations have played a key role in developing observational diagnostics of galactic accretion. In this chapter, we review the status of different observational diagnostics of circumgalactic gas flows, in both absorption (galaxy pair and down-the-barrel observations in neutral hydrogen and metals; kinematic and azimuthal angle diagnostics; the cosmological column density distribution; and metallicity) and emission (Lya; UV metal lines; and diffuse X-rays). We conclude that there is no simple and robust way to identify galactic accretion in individual measurements. Rather, progress in testing galactic accretion models is likely to come from systematic, statistical comparisons of simulation predictions with observations. We discuss specific areas where progress is likely to be particularly fruitful over the next few years.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dave, to be published by Springer. Typos correcte

    Gas Accretion in Star-Forming Galaxies

    Full text link
    Cold-mode gas accretion onto galaxies is a direct prediction of LCDM simulations and provides galaxies with fuel that allows them to continue to form stars over the lifetime of the Universe. Given its dramatic influence on a galaxy's gas reservoir, gas accretion has to be largely responsible for how galaxies form and evolve. Therefore, given the importance of gas accretion, it is necessary to observe and quantify how these gas flows affect galaxy evolution. However, observational data have yet to conclusively show that gas accretion ubiquitously occurs at any epoch. Directly detecting gas accretion is a challenging endeavor and we now have obtained a significant amount of observational evidence to support it. This chapter reviews the current observational evidence of gas accretion onto star-forming galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. This chapter includes 22 pages with 7 Figure

    An Introduction to Gas Accretion onto Galaxies

    Full text link
    Evidence for gas accretion onto galaxies can be found throughout the universe. In this chapter, I summarize the direct and indirect signatures of this process and discuss the primary sources. The evidence for gas accretion includes the star formation rates and metallicities of galaxies, the evolution of the cold gas content of the universe with time, numerous indirect indicators for individual galaxies, and a few direct detections of inflow. The primary sources of gas accretion are the intergalactic medium, satellite gas and feedback material. There is support for each of these sources from observations and simulations, but the methods with which the fuel ultimately settles in to form stars remain murky.Comment: 14 pages, 5 figures, Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe
    corecore