347 research outputs found

    Aging Our Way: Lessons for Living From 85 and Beyond

    Get PDF

    Brain Connectivity in Pathological and Pharmacological Coma

    Get PDF
    Recent studies in patients with disorders of consciousness (DOC) tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low-level cortical activation in response to external stimulation in patients in a “vegetative state” or unresponsive wakefulness syndrome. While activation of these “primary” sensory cortices does not necessarily reflect conscious awareness, activation in higher-order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread frontoparietal “global neuronal workspace” in DOC patients including the midline default mode network (“intrinsic” system) and the lateral frontoparietal cortices or “extrinsic system.” Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma, and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory, or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between “intrinsic” and “extrinsic” brain networks

    Quand les fleurs sont des déchets

    Get PDF
    Dans le cadre d’un vaste projet d’amĂ©nagement de territoire autour d’un fleuve, une Ă©quipe de chercheurs en sciences sociales a Ă©tĂ© engagĂ©e pour traiter de la prĂ©sence des dĂ©chets flottant sur l’eau parmi lesquels se trouvent des vĂ©gĂ©taux et notamment des fleurs. L’analyse ethnographique de la participation des anthropologues, celle du contexte de leur engagement, et celle des rĂ©ponses qu’ils ont pu apporter en fonction de leurs savoirs disciplinaires, permet de dĂ©couvrir qu’ils ont Ă©tĂ© sollicitĂ©s pour Ɠuvrer au « rĂ©-ensauvagement » de la nature. Cette enquĂȘte sur le travail des anthropologues dans le domaine de l’environnement montre que c’est le maintien d’une coupure nature-sociĂ©tĂ© qui permet Ă  une anthropologie s’appuyant sur ses compĂ©tences empiriques de s’engager avec pertinence dans les politiques de la nature.In the context of a large-scale development project focusing on the territory surrounding a river, a team of social scientists was hired to address the presence of waste floating on the water, including plants and notably flowers. The ethnographic analysis of the anthropologists’ participation, in the context of their involvement, and the responses that they were able to make based on their disciplinary knowledge, shows that they were called upon to work towards a "re‑feralisation (rĂ©-ensauvagement)" of nature. This study of the work of anthropologists in the field of the environment shows that it is the maintenance of a break between nature and society that allows an anthropology based on its empirical skills to engage in a relevant way with the politics of nature

    Electrophysiological investigations of brain function in coma, vegetative and minimally conscious patients.

    Full text link
    Electroencephalographic activity in the context of disorders of consciousness is a swiss knife like tool that can evaluate different aspects of cognitive residual function, detect consciousness and provide a mean to communicate with the outside world without using muscular channels. Standard recordings in the neurological department offer a first global view of the electrogenesis of a patient and can spot abnormal epileptiform activity and therefore guide treatment. Although visual patterns have a prognosis value, they are not sufficient to provide a diagnosis between vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state (MCS) patients. Quantitative electroencephalography (qEEG) processes the data and retrieves features, not visible on the raw traces, which can then be classified. Current results using qEEG show that MCS can be differentiated from VS/UWS patients at the group level. Event Related Potentials (ERP) are triggered by varying stimuli and reflect the time course of information processing related to the stimuli from low-level peripheral receptive structures to high-order associative cortices. It is hence possible to assess auditory, visual, or emotive pathways. Different stimuli elicit positive or negative components with different time signatures. The presence of these components when observed in passive paradigms is usually a sign of good prognosis but it cannot differentiate VS/UWS and MCS patients. Recently, researchers have developed active paradigms showing that the amplitude of the component is modulated when the subject's attention is focused on a task during stimulus presentation. Hence significant differences between ERPs of a patient in a passive compared to an active paradigm can be a proof of consciousness. An EEG-based brain-computer interface (BCI) can then be tested to provide the patient with a communication tool. BCIs have considerably improved the past two decades. However they are not easily adaptable to comatose patients as they can have visual or auditory impairments or different lesions affecting their EEG signal. Future progress will require large databases of resting state-EEG and ERPs experiment of patients of different etiologies. This will allow the identification of specific patterns related to the diagnostic of consciousness. Standardized procedures in the use of BCIs will also be needed to find the most suited technique for each individual patient.Peer reviewe

    Aging Modulates the Resting Brain after a Memory Task: A Validation Study from Multivariate Models

    Get PDF
    Recent work has demonstrated that aging modulates the resting brain. However, the study of these modulations after cognitive practice, resulting from a memory task, has been scarce. This work aims at examining age-related changes in the functional reorganization of the resting brain after cognitive training, namely, neuroplasticity, by means of the most innovative tools for data analysis. To this end, electroencephalographic activity was recorded in 34 young and 38 older participants. Different methods for data analyses, including frequency, time-frequency and machine learning-based prediction models were conducted. Results showed reductions in Alpha power in old compared to young adults in electrodes placed over posterior and anterior areas of the brain. Moreover, young participants showed Alpha power increases after task performance, while their older counterparts exhibited a more invariant pattern of results. These results were significant in the 140–160 s time window in electrodes placed over anterior regions of the brain. Machine learning analyses were able to accurately classify participants by age, but failed to predict whether resting state scans took place before or after the memory task. These findings greatly contribute to the development of multivariate tools for electroencephalogram (EEG) data analysis and improve our understanding of age-related changes in the functional reorganization of the resting brain

    Role of Promyelocytic Leukemia (Pml) Sumolation in Nuclear Body Formation, 11s Proteasome Recruitment, and as2O3-Induced Pml or Pml/Retinoic Acid Receptor α Degradation

    Get PDF
    Promyelocytic leukemia (PML) is the organizer of nuclear matrix domains, PML nuclear bodies (NBs), with a proposed role in apoptosis control. In acute promyelocytic leukemia, PML/retinoic acid receptor (RAR) α expression disrupts NBs, but therapies such as retinoic acid or arsenic trioxide (As2O3) restore them. PML is conjugated by the ubiquitin-related peptide SUMO-1, a process enhanced by As2O3 and proposed to target PML to the nuclear matrix. We demonstrate that As2O3 triggers the proteasome-dependent degradation of PML and PML/RARα and that this process requires a specific sumolation site in PML, K160. PML sumolation is dispensable for its As2O3-induced matrix targeting and formation of primary nuclear aggregates, but is required for the formation of secondary shell-like NBs. Interestingly, only these mature NBs harbor 11S proteasome components, which are further recruited upon As2O3 exposure. Proteasome recruitment by sumolated PML only likely accounts for the failure of PML-K160R to be degraded. Therefore, studying the basis of As2O3-induced PML/RARα degradation we show that PML sumolation directly or indirectly promotes its catabolism, suggesting that mature NBs could be sites of intranuclear proteolysis and opening new insights into NB alterations found in viral infections or transformation

    Epicardial cell shape and maturation are regulated by Wt1 via transcriptional control of Bmp4

    Get PDF
    The epicardium plays a crucial role in embryonic heart development and adult heart repair; however, the molecular events underlying its maturation remain unknown. Wt1, one of the main markers of the embryonic epicardium, is essential for epicardial development and function. Here, we analyse the transcriptomic profile of epicardial-enriched cells at different stages of development and from control and epicardial-specific Wt1 knockout (Wt1KO) mice. Transcriptomic and cell morphology analyses of epicardial cells from epicardial-specific Wt1KO mice revealed a defect in the maturation process of the mutant epicardium, including sustained upregulation of Bmp4 expression and the inability of mutant epicardial cells to transition into a mature squamous phenotype. We identified Bmp4 as a transcriptional target of Wt1, thus providing a molecular basis for the retention of the cuboidal cell shape observed in the Wt1KO epicardium. Accordingly, inhibition of the Bmp4 signalling pathway both ex vivo and in vivo rescued the cuboidal phenotype of the mutant epicardium. Our findings indicate the importance of the cuboidal-to-squamous transition in epicardial maturation, a process regulated by Wt1

    Bioethical and medico-legal implications of withdrawing artificial nutrition and hydration from adults in critical care

    Get PDF
    The withdrawal of artificial nutrition and hydration or other life-sustaining treatments is a clinical decision, made in ICUs or in other settings, involving patients suffering from serious and irreversible diseases or impaired consciousness. Such clinical decisions must be made in the best interests of the patient, and must respect the wishes previously expressed by patients, laid down in their wills, in advance directives or in information passed on by relatives or legally appointed health-care agents, and in observance of common bioethical and legal rules in individual nations. Intensivists who are expert in the management of lifesustaining treatments are also involved in deciding when to withdraw futile therapies and instigate end-of-life care procedures for dying patients, with the sole aim of providing comfort and ensuring that suffering is not prolonged unnecessaril
    • 

    corecore