494 research outputs found

    Oxidation of austenitic stainless steels in PWR primary water

    Get PDF
    International audience304L and 316L SS samples are SCC-tested in PWR water for various conditions: strain level, duration, pH, surface finish. The passive Chromium-rich oxide layer, the consistent oxidation feature, is characterized using Transmission Electron Microscope analysis. EDX analysis and Energy-filtered images are used to map the oxide penetration at the surface of the sample and at contiguous grain boundaries. Statistical data obtained by these characterizations are exploited to considerate the effects of deformation, pH and duration on oxidation. Complementary analyses of intergranular crack initiations allow to invetigate the oxidation phenomenon at grain boundaries and its influence on intergranular cracking

    Friction properties of fluorinated carbons

    Get PDF
    In boundary lubrication regime, friction reduction and antiwear processes are associated to the presence of additives in the lubricating oils or greases. These processes are due to the formation of protective tribofilms resulting from chemical reactions between the additives and the sliding surfaces, in the physico-chemical conditions of the sliding contact. Conventional antiwear additives mainly consist of transition metal organo phosphate or thiophosphates which present a remarkable efficiency in the case of contacts between ferrous alloys. In the case of non reacting surfaces, these additives become inactive. Recently developped lubrication strategies consist in the use of dispersion in oils of nano additives able to build the protective tribofilm in the sliding contact without reaction with the surfaces. Carbon fluorinated phases, due to their lamellar structure and their high chemical stability even at relatively high temperature (400°C) represent interesting candidates as lubricant nano-additives subjected to present friction reduction, anti wear and anti corrosion actions. This work presents the tribologic behaviour of some carbon fluorinated derivatives such as graphite fluorides, fluorinated carbon nanofibers, fluorinated carbon nanodiscs and fluorinated carbon blacks. The influence, on the tribologic performances, of the structure of the initial carbon phases, of the fluorination rate (0<F/C<1) and the structure of the fluorinated compounds is discussed

    Role of irradiation and irradiation defects on the oxidation first stages of a 316L austenitic stainless steel

    Get PDF
    The role of irradiation and irradiation defects on the oxidation first stages of 316 L alloy was investigated. A sample with both a proton pre-irradiated and an unirradiated area was exposed to a simulated PWR environment during 24 hours. Irradiation defects and Radiation Induced Segregation at grain boundary and on irradiation defects were characterized and quantified and their effect on the oxidation was evaluated. Irradiation affects the morphology, thickness and chemistry of the oxide layers formed. It enhances the oxidation kinetic and induces the formation of an inner oxide richer in chromium. Defects induced by irradiation act as preferential nucleation sites

    Development of Understanding of The Interaction between Localized deformation and SCC of Austenitic Stainless Steels Exposed to Primary Environment

    Get PDF
    International audienceUnderstanding and quantification of interactions between localized deformation in materials and environmental-assisted cracking (EAC) could play an important role in maintaining the integrity of LWR components. Thus, a detailed understanding of strain localization during plastic deformation and of the underlying mechanisms is of great importance for the manufacturing and design of materials exposed to the environment of the primary circuit of PWRs. Thus, the crystal plasticity law of a 304L austenitic stainless steel has been identified, in order to quantify the effect of a change of strain path on the strain localization and increase the understanding of the contribution of the strain hardening and the strain incompatibilities on the mechanisms of initiation of SCC. Pre-deformation of the specimens used for SCC tests was evaluated using image correlation. Constant elongation rate tests and constant elongation tests were conducted for different levels of pre-deformations (0.07 < < 0.18). Examinations indicated the severe and deleterious effect of the strain localization due to a change of strain path on intergranular SCC susceptibility. Intergranular cracks initiated systematically in the low-deformed areas, where limited deformation (less than 1%) occurred during the exposure to the environment, and where high stress levels due to strain incompatibilities are expected

    Functional Assemblages of Collembola Determine Soil Microbial Communities and Associated Functions

    Get PDF
    Soil processes such as decomposition are mainly performed by soil biota. Although soils worldwide are extremely biodiverse, the relationship between decomposers (fauna and microorganisms), and ecosystem function is poorly understood. Collembola are abundant and ubiquitous microarthropods that are found in terrestrial ecosystems. They can affect the amount of biomass and the activity of microbial communities, either directly through selectively feeding on fungi and bacteria, or indirectly by dissemination of microbial propagules, and the alteration of nutrient availability. However, despite the functional role they play in belowground food webs, the interactions between natural assemblages of soil microbes and Collembola receive little attention. This study, conducted in microcosm conditions, examines the effects of two distinct natural assemblages of functional groups of Collembola (ep- and euedaphic) upon microbial communities using PLFA markers and their associated soil functions (e.g., enzymatic activities and C mineralization rate) over a 2-month period. Our principal objective was to determine whether different functional groups of Collembola had varying effects on microbial soil community abundance, structure and activity, resulting in potentially important effects on ecosystem processes. Our findings show that the interactions of the functional groups of Collembola with microbial communities vary significantly whether they are alone or combined. A distinct response in the composition of the microbial communities was found at the end of the 2-month period. The communities were significantly different from each other in terms of PLFA marker composition. We found that the epedaphic species were related to and promoted Gram+ bacteria whereas euedaphic species were related to Gram- bacterial markers. This had further repercussions on soil function, such as nutrient recycling. Combining both functional groups did not lead to a complementary effect on soil microbial properties, with a drastically different outcome between the first and the second month of the experiment. Additional research dealing with the interactions between decomposers using natural assemblages will help to predict the functional outcomes of soil biota structure and composition

    Impact of Mycobacterium ulcerans Biofilm on Transmissibility to Ecological Niches and Buruli Ulcer Pathogenesis

    Get PDF
    The role of biofilms in the pathogenesis of mycobacterial diseases remains largely unknown. Mycobacterium ulcerans, the etiological agent of Buruli ulcer, a disfiguring disease in humans, adopts a biofilm-like structure in vitro and in vivo, displaying an abundant extracellular matrix (ECM) that harbors vesicles. The composition and structure of the ECM differs from that of the classical matrix found in other bacterial biofilms. More than 80 proteins are present within this extracellular compartment and appear to be involved in stress responses, respiration, and intermediary metabolism. In addition to a large amount of carbohydrates and lipids, ECM is the reservoir of the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, and purified vesicles extracted from ECM are highly cytotoxic. ECM confers to the mycobacterium increased resistance to antimicrobial agents, and enhances colonization of insect vectors and mammalian hosts. The results of this study support a model whereby biofilm changes confer selective advantages to M. ulcerans in colonizing various ecological niches successfully, with repercussions for Buruli ulcer pathogenesis

    Protection against Mycobacterium ulcerans Lesion Development by Exposure to Aquatic Insect Saliva

    Get PDF
    BACKGROUND: Buruli ulcer is a severe human skin disease caused by Mycobacterium ulcerans. This disease is primarily diagnosed in West Africa with increasing incidence. Antimycobacterial drug therapy is relatively effective during the preulcerative stage of the disease, but surgical excision of lesions with skin grafting is often the ultimate treatment. The mode of transmission of this Mycobacterium species remains a matter of debate, and relevant interventions to prevent this disease lack (i) the proper understanding of the M. ulcerans life history traits in its natural aquatic ecosystem and (ii) immune signatures that could be correlates of protection. We previously set up a laboratory ecosystem with predatory aquatic insects of the family Naucoridae and laboratory mice and showed that (i) M. ulcerans-carrying aquatic insects can transmit the mycobacterium through bites and (ii) that their salivary glands are the only tissues hosting replicative M. ulcerans. Further investigation in natural settings revealed that 5%–10% of these aquatic insects captured in endemic areas have M. ulcerans–loaded salivary glands. In search of novel epidemiological features we noticed that individuals working close to aquatic environments inhabited by insect predators were less prone to developing Buruli ulcers than their relatives. Thus we set out to investigate whether those individuals might display any immune signatures of exposure to M. ulcerans-free insect predator bites, and whether those could correlate with protection. METHODS AND FINDINGS: We took a two-pronged approach in this study, first investigating whether the insect bites are protective in a mouse model, and subsequently looking for possibly protective immune signatures in humans. We found that, in contrast to control BALB/c mice, BALB/c mice exposed to Naucoris aquatic insect bites or sensitized to Naucoris salivary gland homogenates (SGHs) displayed no lesion at the site of inoculation of M. ulcerans coated with Naucoris SGH components. Then using human serum samples collected in a Buruli ulcer–endemic area (in the Republic of Benin, West Africa), we assayed sera collected from either ulcer-free individuals or patients with Buruli ulcers for the titre of IgGs that bind to insect predator SGH, focusing on those molecules otherwise shown to be retained by M. ulcerans colonies. IgG titres were lower in the Buruli ulcer patient group than in the ulcer-free group. CONCLUSIONS: These data will help structure future investigations in Buruli ulcer–endemic areas, providing a rationale for research into human immune signatures of exposure to predatory aquatic insects, with special attention to those insect saliva molecules that bind to M. ulcerans

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p &lt; 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM &gt; 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM &gt; 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Seasonal and Regional Dynamics of M. ulcerans Transmission in Environmental Context: Deciphering the Role of Water Bugs as Hosts and Vectors

    Get PDF
    Buruli ulcer, caused by Mycobacterium ulcerans, is a devastating skin disease. Most cases of Buruli ulcer occur in poor rural communities. As a result, treatment is frequently sought too late and about 25% of those infected—particularly children—become permanently disabled. Outbreaks of Buruli ulcer have always been associated with swampy areas. However, the route(s) of bacillus transmission is (are) still unclear. This Mycobacterium species resides in water where it colonizes many ecological niches such as aquatic plants, herbivorous animals and predatory/carnivorous insects. For several years the role of water bugs as hosts and vectors of M. ulcerans was suspected and was demonstrated under laboratory conditions. The aim of this work was to further assess the role of water bugs as hosts and vectors of M. ulcerans in environmental context. This work identifies several water bug families as hosts of M. ulcerans in Buruli ulcer endemic area. The detection of bacilli in saliva of human biting insects provides further evidence for their role in M. ulcerans transmission. Interestingly, three of these insects are good flyers, and as such could participate in M. ulcerans dissemination
    corecore