744 research outputs found

    Impurity transport modelling in the scrape off layer of the MAST tokamak using DIVIMP-OSM-EIRENE and carbon injection

    Get PDF
    Non-hydrogenic impurities play a significant role in the performance of magnetically confined fusion devices, causing increased radiation and dilution of the Deuterium-Tritium fuel isotopes. Impurities are generated at the plasma wall interfaces as well as being deliberately introduced into the plasma in order to reduce heat loads to the vessel walls. The quantity of impurities reaching the core plasma is determined by the impurity source and the nature of transport in the plasma core and scrape-off layer. Direct measurements of impurity transport have been made by injecting carbon ions into the MAST tokamak using an electrical discharge between 2 carbon electrodes. The emission of the resultant carbon plumes was measured by 2 cameras operating at 75kHz − 100kHz mounted on the MAST vessel. The resultant transport of the carbon ions parallel to the background magnetic field was then compared against simulation using the DIVIMP-OSM-EIRENE code

    Impact of Facility Location on the Financial Performance of Integrated and Distributed LVL Production in Subtropical Eastern Australia

    Get PDF
    In subtropical eastern Australia, the declining availability of traditional, large hardwood native forest logs has motivated hardwood sawmills to explore potentially utilising small logs in the manufacture of veneer-based engineered wood products (EWPs), such as laminated veneer lumber (LVL). An aspatial mathematical model that maximises net present value (NPV) over a 30-year project life has been applied to estimate the financial performance of LVL manufacture in this region. Of particular interest was how facility location affected financial performance, and whether distributed production of veneer (close to the log resource) and LVL (distant from the log resource) may be more profitable than integrated production under some circumstances. While integrated production of veneer and LVL near the resource maximised NPV, distributed production was found to be more profitable than integrated production in situations where the LVL manufacturing facility had to be located relatively far from the resource. Nevertheless, the level of value-adding and processing scale had a greater impact on financial performance than facility location. The analysis also highlighted that log procurement strategy substantially affected financial performance. Encouragingly for forest growers and wood processors, utilising large volumes of small diameter logs, was important for maximisation of NPV of larger-scale LVL facilities

    A guide to the rotary veneer processing of coconut palms

    Get PDF
    This book describes best practice for the production of rotary veneer. The book is focused on the production of coconut palm rotary veneer (or cocoveneer), with emphasis on the Pacific region’s coconut resource, but it also presents more general information on producing rotary veneer from traditional forest resources which will be useful in other countries, including Australia. These technical guidelines are based on the R&D portfolio of the Queensland Department of Agriculture and Fisheries (DAF), which included activities predominately undertaken within the ACIAR project ‘Development of advanced veneer and other products from coconut wood to enhance livelihoods in South Pacific communities’ (FST/2009/062)

    Interleukin-6 and Associated Cytokine Responses to An Acute Bout of High-intensity Interval Exercise: the Effect of Exercise Intensity and Volume

    Get PDF
    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6–related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma

    Recent EUROfusion Achievements in Support of Computationally Demanding Multiscale Fusion Physics Simulations and Integrated Modeling

    Get PDF
    Integrated modeling (IM) of present experiments and future tokamak reactors requires the provision of computational resources and numerical tools capable of simulating multiscale spatial phenomena as well as fast transient events and relatively slow plasma evolution within a reasonably short computational time. Recent progress in the implementation of the new computational resources for fusion applications in Europe based on modern supercomputer technologies (supercomputer MARCONI-FUSION), in the optimization and speedup of the EU fusion-related first-principle codes, and in the development of a basis for physics codes/modules integration into a centrally maintained suite of IM tools achieved within the EUROfusion Consortium is presented. Physics phenomena that can now be reasonably modelled in various areas (core turbulence and magnetic reconnection, edge and scrape-off layer physics, radio-frequency heating and current drive, magnetohydrodynamic model, reflectometry simulations) following successful code optimizations and parallelization are briefly described. Development activities in support to IM are summarized. They include support to (1) the local deployment of the IM infrastructure and access to experimental data at various host sites, (2) the management of releases for sophisticated IM workflows involving a large number of components, and (3) the performance optimization of complex IM workflows.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014 to 2018 under grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission or ITER.Peer ReviewedPostprint (published version

    Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy

    Isoaspartate, Carbamoyl phosphate synthase-1, and carbonic anhydrase-III as biomarkers of liver injury

    Get PDF
    We had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo. Increased isoaspartate damage was attenuated by treatment with betaine. To characterize isoaspartate-damaged proteins that accumulate after ethanol administration, rat liver cytosolic proteins were methylated using exogenous PIMT and 3H-S- adenosylmethionine and proteins resolved by gel electrophoresis. Three major protein bands of ~75-80 kDa, ~95-100 kDa, and ~155-160 kDa were identified by autoradiography. Column chromatography used to enrich isoaspartate-damaged proteins indicated that damaged proteins from ethanol-fed rats were similar to those that accrued in the livers of PIMT knockout (KO) mice. Carbamoyl phosphate synthase-1 (CPS-1) was partially purified and identified as the ~160kDa protein target of PIMT in ethanol-fed rats and in PIMT KO mice. Analysis of the liver proteome of 4-week ethanol-fed rats and PIMT KO mice demonstrated elevated cytosolic CPS-1 and betaine homocysteine S-methyltransferase-1 when compared to their respective controls, and a significant reduction of carbonic anhydrase-III (CA-III) evident only in ethanol-fed rats. Ethanol feeding of rats for 8 weeks resulted in a larger (~2.3-fold) increase in CPS-1 levels compared to 4- week ethanol feeding indicating that CPS-1 accumulation correlated with the duration of ethanol consumption. Collectively, our results suggest that elevated isoaspartate and CPS-1, and reduced CA-III levels could serve as biomarkers of hepatocellular injury

    CovidNeuroOnc: A UK multicenter, prospective cohort study of the impact of the COVID-19 pandemic on the neuro-oncology service

    Get PDF
    BackgroundThe COVID-19 pandemic has profoundly affected cancer services. Our objective was to determine the effect of the COVID-19 pandemic on decision making and the resulting outcomes for patients with newly diagnosed or recurrent intracranial tumors.MethodsWe performed a multicenter prospective study of all adult patients discussed in weekly neuro-oncology and skull base multidisciplinary team meetings who had a newly diagnosed or recurrent intracranial (excluding pituitary) tumor between 01 April and 31 May 2020. All patients had at least 30-day follow-up data. Descriptive statistical reporting was used.ResultsThere were 1357 referrals for newly diagnosed or recurrent intracranial tumors across 15 neuro-oncology centers. Of centers with all intracranial tumors, a change in initial management was reported in 8.6% of cases (n = 104/1210). Decisions to change the management plan reduced over time from a peak of 19% referrals at the start of the study to 0% by the end of the study period. Changes in management were reported in 16% (n = 75/466) of cases previously recommended for surgery and 28% of cases previously recommended for chemotherapy (n = 20/72). The reported SARS-CoV-2 infection rate was similar in surgical and non-surgical patients (2.6% vs. 2.4%, P > .9).ConclusionsDisruption to neuro-oncology services in the UK caused by the COVID-19 pandemic was most marked in the first month, affecting all diagnoses. Patients considered for chemotherapy were most affected. In those recommended surgical treatment this was successfully completed. Longer-term outcome data will evaluate oncological treatments received by these patients and overall survival
    corecore