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Abstract

Impurity transport modelling in the scrape off layer of the MAST

tokamak using DIVIMP-OSM-EIRENE and carbon injection

Mr. Huw Jonathan Leggate

Non-hydrogenic impurities play a significant role in the performance of mag-

netically confined fusion devices, causing increased radiation and dilution of

the Deuterium-Tritium fuel isotopes. Impurities are generated at the plasma

wall interfaces as well as being deliberately introduced into the plasma in

order to reduce heat loads to the vessel walls. The quantity of impurities

reaching the core plasma is determined by the impurity source and the nature

of transport in the plasma core and scrape-off layer. Direct measurements of

impurity transport have been made by injecting carbon ions into the MAST

tokamak using an electrical discharge between 2 carbon electrodes. The emis-

sion of the resultant carbon plumes was measured by 2 cameras operating at

75kHz − 100kHz mounted on the MAST vessel. The resultant transport of

the carbon ions parallel to the background magnetic field was then compared

against simulation using the DIVIMP-OSM-EIRENE code.

xxii



CHAPTER 1

Introduction

An understanding of transport phenomena in the Scrape-Off Layer (SOL) of

tokamak plasmas is of key importance in the development of next genera-

tion fusion devices such as ITER [2]. Both the control of the heat load on

plasma facing components and the control of impurities including helium ash

removal are critically dependent on SOL transport. An improved understand-

ing of the processes in the SOL may also provide insight into other plasma

processes associated with the plasma boundary such as the edge transport

barrier present in H-mode discharges. It is useful at this point to make a dis-

tinction between the plasma edge and the SOL, the former covers not only

the region outside the Last Closed Flux Surface (LCFS) of the plasma but

extends a short distance inwards from the LCFS, covering the H-mode edge

transport barrier and associated complex atomic physics. The SOL, although

included in the term edge plasma, stops at the last closed flux surface. This
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1.1 Edge plasma transport

thesis deals only with SOL physics and will use the terms SOL and plasma

boundary interchangeably.

Over the first few decades of fusion research little attention was paid to

the plasma boundary. However, the introduction of the diverted tokamak

[3] and the discovery of the H-mode [4] focused attention on the problems

of impurity transport into the core plasma via the SOL and on the higher

levels of power loading on the small plasma wetted areas of the first wall.

Since then the resources directed to diagnosing and modelling the plasma

boundary have increased significantly. Much of the early results of this work

are documented in a book written by Peter Stangeby, The Plasma Boundary

of Magnetic Fusion Devices[5], which also explores the foundations of the

physics of the plasma boundary. Since this publication, efforts towards an

improved understanding have continued and a large body of work on the

edge of tokamak plasmas now exists. This thesis aims to add to this work

through an understanding of the transport of impurities in the tokamak di-

vertor and here briefly describes the mechanisms affecting this as well as the

experimental and computational methods commonly used.

1.1 Edge plasma transport

1.1.1 Parallel and perpendicular transport

The transport of impurities is naturally dependant on the hydrogenic back-

ground plasma itself and the transport processes operating within it. In

general plasma transport parallel to the local magnetic field is orders of mag-

nitude greater than transport perpendicular to the field lines. This makes it

useful to treat parallel transport independently from other directions of trans-

port. Parallel flows exist in the SOL, primarily driven by particle sources
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1.1 Edge plasma transport

arising from the ionisation of neutrals from the targets and main chamber

wall, by cross field diffusion across the separatrix from the bulk plasma and

particle sinks present at the targets. These sources and sinks create vari-

ations in the plasma pressure along the SOL resulting in pressure gradient

forces − 1
n
dp
dx

that drive flows in the SOL. The large source at the separatrix

mean that these flows are often, though not always directed along the mag-

netic field towards the divertor targets. The fluid is transported along field

lines with a velocity of the order the plasma sound speed cs where[5]

cs = [(γeZkTe + γikTi)/mi]
1/2 ≈

√
2kTe
mi

(1.1)

where Te and Ti are the electron and ion temperatures, mi is the ion

mass and γe and γi are the adiabatic indices of the electrons and ions. For

typical SOL temperatures in the range 1-100 keV and assuming Te = Ti, the

sound speed is of order 104−105ms−1. The SOL length L ≈ πRq is typically

∼ 50m, giving a typical dwell time in the SOL of τSOL ≈ 1ms. This estimate

of the SOL dwell time relies on ∇T = 0, which in a tokamak plasma is not

the case. This approximation of an isothermal SOL is one feature of what

is known as the simple SOL, when temperature gradients are included the

SOL is referred to as complex.

Cross-field plasma velocities v⊥ are often orders of magnitude less than

the fast parallel flow v‖, so that the SOL width is very small. If one makes

the assumption that cross-field transport is diffusive [6],

v⊥ ≈ D⊥/l⊥ (1.2)

where l⊥ is the characteristic density scale length and D⊥ is the cross-field

diffusion coefficient, then the SOL width is given by
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λSOL ≈
[
D⊥L

cs

]1/2
(1.3)

However, diffusivities calculated from first principles lead to SOL widths

that are considerably less than those observed experimentally[7, 8]. This

leads to the conclusion that cross field diffusion is not sufficient to account

for cross-field transport in the SOL, and other mechanisms such as particle

drifts and turbulence are likely to play a significant role.

1.1.2 Radial asymmetry

From early on in tokamak development it was observed that strong asym-

metries existed in temperature, density and power measurements measure-

ments between the inner and outer targets of divertor discharges [9] [10]

[11]. Temperature and power are seen to be significantly higher on the out-

board divertor, while plasma density is higher on the inboard divertor. These

asymmetries can be largely explained due to the geometric configuration of

tokamaks. Firstly the outboard surface area of a tokamak discharge is several

times larger than the inboard surface area, leading to an increased power flux

across the separatrix into the outboard SOL assuming uniform power flow

density over the SOL. A second effect is that of flux compression on the out-

board side due to Shafranov shift, which increases the power density to the

outboard SOL and hence outboard divertor target based on the assumption

that cross field transport is dependent on spatial gradients.

The observed asymmetry is highly dependent on the plasma configura-

tion. Double null configuration experiments on the PDX tokamak have shown

a ratio in deposited energy between the inner and outer divertor targets of

∼ 9[9]. Single null configurations typically showed much less asymmetry[12],

closer to a ratio of 2. This difference can be heuristically explained by the
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connection between the inner and outer SOL for single null discharges, the

fast parallel transport acts to equalise temperature and density across the

SOL.

Although the in/out asymmetries can be partially explained by geometric

considerations continued research showed that the asymmetries also depend

on the direction of the toroidal magnetic field BT [13][14] and on the discharge

density[15], with the asymmetries increasing as density increases until both

divertor targets enter the detached regime when the asymmetries all but

disappear.

1.1.3 Particle drifts

When searching for mechanisms to drive the change in asymmetry with the

direction of magnetic field it is natural to look for forces acting on the plasma

fluid that are themselves dependent on the magnetic field. The toroidal

plasma current present in tokamak plasmas is driven by the toroidal electric

field Eφ created by the transformer action of the central solenoid. This field

causes ions in the SOL to drift towards the inner or outer targets depending

on the direction of BT . The direction of BT is best defined using the direction

of the induced B×∇B drift[6],

v∇B = ± v
2
⊥m

2eB3
B×∇B (1.4)

where v⊥ is the gyroscopic speed and m is the mass of the species. This

drift is vertical and for the direction of ’normal’ clockwise BT is downwards

towards the targets for ions and upwards for electrons. For ∇B drift towards

the targets the Eφ ion drift is directed towards the inner target, independent

of the direction of plasma current[5].
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Aside from the toroidally induced drifts, the electric fields present in the

SOL also affect particle transport in the form of E×B drifts [16]

vE×B =
E×B

B2
(1.5)

Electric fields exist throughout the SOL, affecting both parallel and per-

pendicular transport. Radial electric fields due to the temperature gradient

across the SOL cause poloidal drifts and the poloidal electric fields along the

SOL cause radial drifts, strong fields close to the targets due to the plasma

sheath also cause radial drifts. It should be noted that the drifts do not

depend on the sign of the electric charge, so electrons and ions are affected

in the same way and no charge separation occurs.

The poloidal Er ×B drift acts in the same direction as the standard par-

allel flow seen in the SOL, for B×∇B downwards the drifts tend to increase

density at the outer target and decrease density at the inner. This pressure

imbalance should then result in plasma flow from the outer to inner divertor.

Radial Eθ ×B particle drifts cause a particle flux across the separatrix, for

B × ∇B downwards the flux is from the SOL into the main plasma on the

outer SOL and from the main plasma into the SOL on the inboard side. In

the simplest case this flux creates a source at the inboard SOL which then

drives plasma flow from the inner to outer targets. One would then expect

an increase in density at the inner target and a drop in target temperature.

Pressure gradient induced drifts are also present in the SOL, known as

diamagnetic drifts

v∇p =
B×∇p
enB2

(1.6)

These drifts are divergence free and therefore do not result in net plasma

flow to the divertor targets [17]. However v∇p is dependent on the sign of
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1.1 Edge plasma transport

the charge and so ion and electron drifts are in opposite directions, leading

to currents in the SOL.

Drifts in the SOL can also contribute to the parallel flow. The ∇B

drift(1.4) causes ions and electrons to drift vertically in opposite directions.

The curvature drift[6]

vcurv = ±
v2‖m

eB3
B×∇B (1.7)

due to the curvature of the magnetic field lines acts in the same direction

and these two drifts result in vertical charge separation. This then drives

parallel currents in the SOL that contribute to parallel flow in the SOL,

known as Pfirsch-Schluter (P-S) flow. Poloidal Er ×B drift also contributes

to the P-S flow directly, though does not contribute to the Pfirsch-Schluter

currents as the drift direction is independent of species charge. An important

prediction of P-S flow is that the flow velocity will be at a maximum at the

outer midplane and a negative minimum at the inner midplane, changing

with field direction.

The drifts present in the SOL play a significant role, a simple example

illustrates this, estimating the poloidal E×B drift velocity as[5],

vE×B ≈
3kTe
eλTeB

(1.8)

where λTe = 10−2m is the electron temperature decay length, Te = 25eV

and B = 3T gives vE×B ≈ 2500ms−1. A typical magnetic pitch angle of 10

degrees gives a poloidal projection of the sound speed estimated previously

(1.1) of approximately 2000ms − 20000ms, so in this example the drift ve-

locity is at the lower end of the range of sound speeds and would be likely

to have an observable effect on the SOL.
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1.1.4 Flow reversal

One might expect parallel plasma flow in the SOL to be towards the targets

at all points, taking particles that have diffused across the separatrix towards

the targets. However, it has been shown [18] that under certain conditions

the plasma flow can reverse close to the separatrix. This has been verified

experimentally [19] [20] though the exact mechanisms governing this effect are

not fully understood. One basic explanation [5] is that of radial temperature

gradients across the SOL that allow neutrals from the walls of the divertor

to cross the outer (cooler) part of the SOL and become ionised close to the

separatrix upstream from the target, introducing a particle source potentially

greater than the sink available at the target. Particle balance is satisfied by

flow away from this over dense region towards the main plasma. However,

observations have shown that flow-reversal can be instigated by reversing the

toroidal magnetic field [21] [20] implying thatBT dependent plasma drifts and

associated flows also play a role. Flow-reversal is of particular importance

as it can allow the transport of impurities from the targets in to the main

plasma, which is problematic for future reactor design, see 1.2.1.

1.1.5 Turbulence

In recent work on asymmetries, flow reversal and plasma transport has

started to include turbulence as a significant and potentially dominant process[8,

22]. It has long been recognised that turbulence was likely to play a major

role in tokamak plasmas but it is only recently that high speed diagnos-

tics and High Performance Computing (HPC) environments have allowed

the subject to be more fully explored. Though the effect of turbulence on

plasma transport is far from fully understood it is clear that it plays a ma-
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1.1 Edge plasma transport

jor role in cross-field transport [23]. The first indication that a turbulent

explanation was required was the large SOL widths observed in experiment,

considerably greater than that expected due to purely diffusive transport[24],

1.3.

Turbulent transport in the plasma core has been shown to have the char-

acteristics of drift-Alfvén turbulence[25, 26]. Edge turbulence is less easy to

characterise, though it appears to be dominated by large cross-field trans-

port events known as ’blobs’ [23]. The turbulent transport of these blobs

has been suggested to be interchange-mode-like in character[27] while an-

other approach[28] suggests radial advection of the blob structures. Detailed

investigation of the edge turbulence has shown that the fluctuations are inter-

mittent and strongly non-Gaussian with the probability distribution function

of density fluctuations being asymmetric and having tails that are consistent

with exponential decay of probability with fluctuation amplitude[29, 30]. It

is also important to note the large range of length scales associated with the

turbulent fluctuations[31]. These structures have been observed experimen-

tally [32, 33] and understanding their dynamics is key to understanding SOL

transport.

The effect of turbulent fluctuations on parallel flow is poorly understood.

It is likely that the convective cells caused by plasma blobs generate sheared

zonal flows[34], however sheared flows tend to suppress turbulence [35], so

that parallel flows and turbulence are likely to be strongly coupled. Tur-

bulence may also play a strong role in flow asymmetries, for double null

discharges parallel flow at the mid-plane inner SOL is much weaker than

flows in the outer SOL, while for single null discharges the difference is much

less pronounced. It has been suggested that poloidal gradients caused by

ballooning induced turbulence in the outer SOL drive flows that in single
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1.2 Impurities

null discharges also affect the inner SOL[36]. For double-null discharges the

inner SOL particle flux has been measured to be considerably lower than the

outboard side [37], which is again consistent with ballooning-like turbulence.

1.2 Impurities

1.2.1 The effect of impurities on the plasma

Impurities are defined as any element other than the deuterium/tritium fuel

that composes the main chamber plasma, this includes the helium ash that

is the result of the D-T fusion reaction. The main effect of these impurities is

to cool the plasma via radiation, which directly affects plasma performance.

The radiation from any given element is highly dependent on the charge

on that element and the plasma temperature. Generally, higher Z impurities

radiate more than lower Z impurities and so are undesirable in a fusion device.

For fully ionised impurities radiation is caused by Bremsstrahlung losses due

to collisions with electrons and ions and is approximately given by [38]

Wb = 0.5× 10−24neniZ
2T 1/2W/m3 (1.9)

The Z2 dependence immediately shows the problem of high Z impurities.

To add to this, high Z impurities are more likely to retain some of their inner

electrons, even at the high energies found in tokamak plasmas (≈ 10keV ).

This allows radiation due to excitation of electrons and provides a much

higher radiative efficiency.

As well as cooling by radiation the impurity ions can cause an effect

known as fuel dilution. The plasma β, the total plasma pressure over the

magnetic pressure B2/2µ0 cannot exceed the Troyon β-limit[6]
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1.2 Impurities

βmax[%] =
2.8Ip
aB

(1.10)

As all electrons and ions contribute to the plasma pressure and therefore

β the increased number of electrons from high Z impurities can quickly cause

the plasma to approach this limit, even for low impurity fractions.

Low-Z impurities can also cause current profile contraction due to radi-

ation near the plasma edge, where the temperatures are relatively low and

some electrons can remain bound to the impurity ion. This potentially strong

radiation can reduce the plasma conductivity to a point where the current

profile contracts causing high current gradients inside the q=2 surface[6]

which can then lead to plasma instabilities.

As well as these negative effects impurities can also be beneficial, notably

by radiative cooling of the SOL, reducing the heat load on the divertor tar-

gets. Radiative cooling of the H-mode pedestal via impurities has also been

used to control the heat load on the targets due to Edge Localised Modes

(ELMs) [39].

1.2.2 Impurity generation

Impurities in tokamaks are primarily generated by either chemical or phys-

ical sputtering. Physical sputtering is the principle mechanism in impurity

generation and occurs when an energetic particle striking a solid surface

transfers enough momentum to eject an atom from the solid lattice. This

process occurs on all plasma wetted areas but can also occur on surfaces a

large distance away from the main plasma due to the escape of energetic

charge-exchange neutrals. Lower energy particles can cause chemical sput-

tering when impacting on a carbon surface, the chemical potential energy of

hydrogenic or oxygen atoms or ions can break carbon bonds and allow the
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creation of C −D or other reactive compounds. This can easily result in the

emission of volatiles such as CH4. In cool dense divertor plasmas chemical

sputtering can in fact dominate over physical sputtering[40]. Once an impu-

rity has entered the main plasma it is likely at some point to return to the

wall, potentially resulting in self-sputtering and increasing the impurity con-

tent of the plasma. Gaseous impurities can also add to the impurity source

through recycling at the targets.

As well as impurities entering the plasma from vessel structures there

exists a completely unavoidable source of impurities in any burning plasma.

Helium produced by the D-T reaction is an unwanted impurity in the bulk

plasma and as a gas is also recycled at the targets. This is a serious problem

for future burning plasma devices due to the conflicting requirements to

reduce the impurity source to the main plasma while attempting to remove

helium ash.

1.2.3 Impurity transport

Stangeby[5] provides a useful analysis of the primary forces acting on impuri-

ties parallel to the magnetic field. A basic treatment leads to five force terms

acting on the plasma, the electrostatic force, the pressure gradient force, a

friction force and forces due to ion and electron gradients.

FZ = ZeE − 1

nZ

dpZ
ds

+mZ
(vi − vZ)

τs
+ αe

d(kTe)

ds
+ βi

d(kTi)

ds
+ ... (1.11)

where Z is the impurity species atomic number, nZ is the impurity species

density in particles/m3, pZ the impurity pressure in Pa, vi and vZ are the

hydrogenic ion and impurity ion velocities respectively, τs is the impurity

stopping time, Te and Ti are the electron and ion temperatures, s is the
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parallel distance along the field line and αe and βi are coefficients that depend

primarily on Z.

The electrostatic force ZeE is simply the force exerted on the charged

impurity ions by the parallel electric field present in the SOL. The pressure

gradient force − 1
nZ

dpZ
ds

acts in the direction opposite to ∇PZ due to the

imbalance of pressure on each side of a given volume. The friction force

mZ
(vi−vZ)

τs
is due to the background flow of the hydrogenic plasma and acts

in the same direction as the flow, generally towards the targets.

The final two terms are slightly less intuitive and are due to the collision

cross-section and hence collision frequency between impurities and either

electrons or hydrogenic ions having an inverse dependence on temperature.

Ions or electrons colliding with the impurity ions will have travelled on aver-

age λii or λee since their last collision with another similar species, meaning

that the average temperature and therefore collision frequency for ions or

electrons impacting the impurity ions from the cooler side will be higher and

more momentum will be transferred than for ions or electrons impacting from

the hotter side. This drives impurity ions up the temperature gradient, in

general away from the targets, see figure 1.1

A more rigorous treatment of these forces is presented by Spitzer [41], in

which collisions between particles are dealt with from first principles. How-

ever the Spitzer treatment assumes a constant temperature plasma and so

does not include the ion and electron temperature gradient terms. A more

detailed treatment including temperature gradients has been carried out by

Reiser[42] that includes these terms.
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Figure 1.1: The temperature gradient force drives impurities up the temper-

ature gradient. Ions and electrons impacting the impurity ion Z from the

lower temperature side will have lower average temperatures and collision

frequency than ions and electrons from the hotter side. They will therefore

transfer less momentum to the impurity ion resulting in a net force F in the

direction of increasing temperature.

1.3 Plasma boundary diagnostics and exper-

imental techniques

1.3.1 Principle plasma boundary diagnostics

A variety of diagnostics are used in the edge plasma, the three most common

techniques, Langmuir probes, spectroscopic imaging and Thomson scattering

are described below.

Langmuir probes

A sufficiently negatively biased surface in contact with the plasma will repel

all electrons, positive ions will flow to the surface causing a current jisat that
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is independent of the applied voltage. Assuming Ti = Te this saturation

current is given by

jisat = enecs (1.12)

As the bias is increased electrons begin to reach the surface and the

net current decreases until it reaches zero at the floating potential Vf when

ji = je. The measured current is given by

I = (ji + je)A = ji(1− exp(e(V − Vf )/Te))A (1.13)

where A is the projected area of the probe, V is the bias voltage relative

to the plasma and ji, je are the current densities due to electrons and ions.

As the voltage is further increased ions are prevented from reaching the

surface and an electron saturation current is reached. By sweeping the bias

voltage one can determine the electron temperature and density. This is the

single electrode Langmuir probe, double and triple probe configurations are

also possible where probes are biased to different levels with respect to each

other.

Langmuir probes are cheap and robust and provide one of the most im-

portant tokamak diagnostics. Several hundred may be found located in the

typical tokamak divertor and they provide valuable information for experi-

ment and modelling. Reciprocating probes also allow the use of Langmuir

probes inside the SOL, however the probe itself will perturb the plasma and

can only be in contact with the plasma for short periods of time.

A pair of Langmuir probes aligned with B and with the collection faces

pointing outwards along the field allow one to make an estimate of parallel

flow in the SOL. This technique relies on the premise that the ion current

will be greater for the probe facing into the plasma flow. The ratio of the
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upstream to downstream current being a function of the ratio of the flow

velocity to the ion sound speed. Langmuir probes in this configuration are

known as Mach probes. Mach probe measurements are however subject to

significant errors and care must be taken in their interpretation[43].

Thomson scattering

Several non-invasive methods exist for probing the SOL. One of the most

common of these is Thomson scattering, powerful infra-red or visible lasers

are fired into the plasma and the light scattered from electrons is detected by

spectroscopically filtered cameras. The total intensity of the scattered light is

proportional to the plasma density and the electron temperature is calculated

from the observed Doppler broadening of the scattered light due to the elec-

tron thermal motion. Thomson scattering systems exist on many tokamaks

and typically provide electron temperature and density profile measurements

at resolutions better than 1cm [44, 45].

Spectroscopic imaging

At the relatively cool temperatures in the SOL plasma emission is predom-

inantly in the visible spectrum. This makes spectroscopic investigation of

the SOL particularly useful. First the deuterium confinement time can be

obtained by measuring the Dα line intensity and assuming that the rate of

recombination is much less than the ionisation rate in the SOL. The effec-

tive plasma atomic number Zeff can also be determined by measuring the

background Bremsstrahlung radiation, which is a function of electron temper-

ature, density and Zeff . Aside from these two techniques edge line emission

provides valuable information. Charge exchange between plasma ions, impu-

rities or heating or diagnostic beams provides a measurement of Ti. Doppler
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broadening and shifting of emission lines provides information on Ti, plasma

rotation and SOL flow. Emission from impurities allows spatially resolved

measurements of both impurity temperature and density as well as providing

information on impurity transport and plasma flow. Helium and lithium are

typically used in diagnostic beams while carbon has several strong visible

lines, particularly CII at 514nm and CIII at 465nm. The presence of carbon

in standard plasmas and the existence of these lines makes carbon a partic-

ularly useful tool in studying plasma flow. Modern fast cameras are able to

image the emission on microsecond timescales and several experiments have

been carried out using impurity injection to probe plasma flow, see section

1.3.2.

Other edge diagnostics

Aside from the diagnostics mentioned above a whole range of options exist

for diagnosing the edge plasma. These include bolometer arrays for the mea-

surement of radiated power, charge exchange recombination spectroscopy for

density and temperature profiles of low Z impurities, reflectometry for edge

density profiles and turbulence measurements, interferometry for integrated

electron density measurements and divertor pressure gauges. Spectroscopic

imaging of Lithium and Helium beams also provide measurements of tem-

perature and density

Coherence imaging spectroscopy

Accurate measurements of plasma flow are particularly hard to achieve, Mach

probes, already described here in 1.3.1 perturb the plasma and have a large

measurement error. A method for passive measurements of plasma flow has

been developed on the DIII-D tokamak using coherence imaging [46–48]. This
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technique uses an imaging 2 beam interferometer; a fixed delay is introduced

between the two beams at all positions on a 2D image of the plasma. An

additional delay is then added which varies along one image direction and

results in a set of parallel fringes superimposed on the image. Any phase

change due to Doppler shifts arising from plasma flow cause a distortion in

these fringes and comparison with an un-distorted calibration pattern using

FFT techniques yields flow information. It should be noted that the spatial

resolution differs between the horizontal and vertical directions, assuming

the variable delay is introduced horizontally the vertical resolution is defined

by the scale of the fringes which can be many pixels.

1.3.2 Impurity injection experiments

Stangeby [5] categorises impurity injection experiments into those using re-

cycling and non-recycling elements. Experiments using recycling gases such

as helium and argon are usually concerned with gaining an understanding

of impurity retention and pumping. Obtaining information about local con-

ditions is more difficult due to the competition between the injected source

and any recycling that occurs after this, although valuable information can

still be gained [49]. Experiments using non-recycling impurities can pro-

vide measurements of the parallel and poloidal drift velocities [50–52] and

directly show the level of impurity screening and whether impurities can be-

come trapped in the SOL [53, 54]. The primary method used for these types

of studies is 2 dimensional spectroscopic imaging of the lower charge states

of the impurity used. Carbon has been the most commonly used impurity

due to its prevalence in many tokamaks, the ease with which it forms gaseous

compounds with hydrogenic elements, the existence of strong visible emission

lines and the availability of the carbon-13 isotope which allows postmortem
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examination of carbon deposition from injected carbon.

Edge impurity injection experiments have been carried out on a range

of tokamaks including DITE[54], TEXT[55], Alcator C-Mod[51], DIII-D[56],

ASDEX Upgrade[57, 58], JET[59] and TEXTOR[60]. Various techniques are

used and a selection of these are briefly discussed below.

Gas injection

Gas injection systems designed to inject trace quantities of gas into the SOL

have been installed on several tokamaks. Recent experiments have been

carried out on both Alcator C-Mod and DII-D using impurity injection for

the study of local impurity transport and SOL flows. On Alcator C-Mod

Gangadhara et al.[51] used a reciprocating fast scanning probe[61] to inject

deuterated ethylene (C2D4) into the SOL at various depths. The gas injec-

tion had a typical duration of 10ms and injected approximately ≈ 5× 1016

molecules, resulting in ≈ 1017 carbon atoms. The carbon II and III lines

where then imaged using gated CCD cameras. The aim of this study was

to compare data obtained from the plume imaging with data previously ob-

tained from fast scanning Langmuir/Mach probes, specifically to improve

the understanding of parallel and E × B flows that affect the transport of

impurities into the bulk plasma. The results clearly showed that the surface

of the probe had a significant effect on the plume structure, causing jetting

parallel to the local magnetic field. Transport modelling that includes this

effect suggests that values for Er obtained using probes are in error and that

probes over-estimate the parallel flow to the divertor in the far SOL, suggest-

ing that main chamber recycling and not target recycling is the dominant

process in the Alcator C-Mod SOL.

A different approach has been taken at DIII-D where a Porous Plug Injec-
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tor (PPI)[56, 62] has been developed that mimics the carbon impurity source

due to chemical sputtering. This is achieved by siting a gas injector behind

a porous graphite cap of diameter 4.2cm that has a regular square lattice

of 1004 0.25mm holes drilled into its surface. This injector is mounted on

the divertor materials evaluation system (DiMES) near the outer strike point

in the DIII-D divertor. This allows a diffuse cloud of methane molecules to

be injected into the divertor at an energy of approximately 0.05eV, similar

to that expected from chemically sputtered hydrocarbons. The injection is

distributed over an area that is large relative to the mean free path of the

plasma-molecular processes being studied, allowing detailed studies of the

photon emission of CH4 molecules injected at known flow rates. This exper-

iment has confirmed that the intrinsic chemical erosion yield is close to that

measured in the laboratory.

Several experiments using gas injection have been carried out on ASDEX

Upgrade [52, 58, 63] using 13CH4. In these experiments gas is injected into

the lower divertor at the end of a campaign, a selection of tiles close to the

injection location is then removed and the deposition of carbon-13 studied.

Differences in deposition are highlighted for forward and reversed fields [52],

between H-mode and L-mode discharges[58] and for graphite and tungsten

tiles[63]. These differences can be attributed to the effect of the E×B and

B × ∇B forces and to the effect of surface roughness in the case of the

different tile types. For certain L-mode shots significant upstream transport

is observed which is not observed in either H-mode shots or when using lower

puffing rates[58]. Carbon-12 has also been used on several machines [64–66]

to study hydrocarbon fluxes and erosion yields by spectroscopic imaging of

injected carbon.

Impurity injection experiments aiming to understand the levels of impu-
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rities reaching the core due to chemical sputtering have also been carried

out, an example of this being the studies on JET[59, 67]. The more recent of

these[59] used methane injected from several ports in the JET divertor and

midplane and at the top of the vessel. The core carbon content was then

measured using charge exchange recombination spectroscopy and Zeff mea-

surements from visible Bremsstrahlung. The experiment was performed in

a range of L-mode and H-mode plasma conditions and the carbon injection

and transport to the core was modelled using the DIVIMP and EDGE2D

codes (see section 1.4. Various observations were then made including in-

creased penetration to the core from the private flux region compared to the

rest of the SOL and increased penetration for limiter plasmas. It was also

noted that close to the separatrix carbon transport is dominated by diffu-

sion while further out it is dominated by parallel flow. It should be noted

that this approach is fundamentally different to the other two methods men-

tioned previously as it does not use data on local SOL transport and relies

completely on modelling to infer transport properties. Similar experiments

designed to study the bulk penetration of gases such as neon and argon into

the core have also been performed on JET[68]. These elements are likely

to be used on future machines to reduce the power loading to the divertor

through impurity seeding [39].

A supersonic gas injector[69] was developed for use on the NSTX[70]

spherical tokamak. This injector was intended for both fuelling and diagnos-

tic applications and is capable of injecting up to 1022 particles per second at

velocities up to Mach 4 into the edge plasma.
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Laser ablation and sublimation

Gas injection systems are intrinsically limited in the impurities that they can

inject. They are also unable to inject impurities on very short timescales.

Laser ablation systems are able to inject a variety of solid materials by fo-

cusing a high power laser beam onto a target inside the tokamak over very

short timescales.

The laser ablation system on JET has been used to inject Tungsten,

Hafnium and Nickel[71–73]. The system uses a ruby laser to fire pulses of

up to 10J at a target positioned on the vessel wall, typically 1018 particles

are ablated into the chamber, with around 5% of the particles reaching the

plasma core. This system provides important information on core impurity

transport and penetration, however the influx of high Z particles is highly

perturbing and provides limited information on local edge transport. Ex-

periments using laser ablation have also been carried out on several other

machines including ASDEX Upgrade[74], TCV[75] and TEXT[55]. Experi-

ments using laser ablation tend to rely heavily on spectroscopic imaging of

the impurity emission, for heavy elements this emission is generally in the

UV and X-ray, this and the complexity of the spectra make this area of work

extremely challenging.

Silicon has been injected into ASDEX Upgrade using the Laser-blow-

off technique in order to study core transport[74]. A significant increase in

core transport is observed in plasmas with central electron-cyclotron heating,

which is promising as a method for helium ash extraction in a burning reac-

tor. A novel method for the injection of small quantities of high Z material

has also been developed on ASDEX Upgrade[76]. A small heated chamber

mounted on a probe head allows small quantities of suitable materials to be

sublimated and then injected into the plasma. This allows high Z materi-
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als to be injected in controllable quantities, although still over a relatively

long timescale. Tungsten carbonyl [W (CO)6] was used in experiment, this

allows the tungsten particle flux to be accurately estimated by observing the

emission from the carbon and oxygen ions.

1.4 Modelling Impurities in the Scrape-Off

Layer

1.4.1 Approaches to Impurity Modelling

Two basic approaches are generally employed when modelling impurities in

the edge plasma. The first of these is to use a multi-fluid approach and

treat both the hydrogenic background plasma and the impurity particles as

fluids. This approach has the disadvantage that impurities in lower charge

states tend to exist only for a very short time and so are not in thermal

equilibrium with the background plasma[42], these approaches can also be

computationally very expensive[77]. However they do include the effect of the

impurities themselves on the edge plasma and are therefore valuable tools.

The other approach is to model the background plasma as a fluid, with or

without the effect of neutrals and impurities, and then adopt a fully kinetic

treatment for the impurity particles to be studied[78].

1.4.2 The Two-Point Model

The simplest approach to modelling the SOL while neglecting impurities uses

two reference points, one at the target t and the other upstream at or close

to the LCFS (u). This is known as the Two-Point model[12, 79] and despite

its simplicity is able to replicate many observed plasma conditions[80]. The
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upstream location can be taken as half way between the targets (assuming a

single null divertor plasma) or at the midplane, the choice of location does

not have a significant effect on the results.

Three basic assumptions are used in the two point model[5]:

1. Recycling neutrals are re-ionised in a thin layer close to the targets on

the same field line as followed by the original ion that impacted the

target. There is also no parallel flow along most of the SOL and no

cross-field flow.

2. There is no friction between the plasma and the targets and no viscous

effects so that the total pressure is constant along the flux tube.

3. The parallel power flux density is carried solely by conduction.

Following Stangeby these assumptions lead to a set of three equations

containing three unknowns nt, Tt, Tu,

2ntTt = nuTu (1.14)

T 7/2
u = T

7/2
t +

7

2

q‖L

κ0e
(1.15)

q‖ = γntkTtcst (1.16)

with the specified constants L being the distance between the two points

along the magnetic field, κ0e the electron parallel conductivity coefficient and

γ the sheath heat transmission coefficient. cst is the sound speed at the target

and the control parameters nu and q‖ are the upstream density and parallel

power flux density.
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It is possible to extend this basic model to include radiative and charge

exchange power loss, momentum loss due to friction and viscous forces, non-

zero parallel heat convection and energy lost by electrons re-ionising recycled

neutrals, these extensions are described by Stangeby.

1.4.3 1D fluid modelling along B

The complexity of modelling the SOL essentially increases with the number

of dimensions that one chooses to model. The two point model described

above is a zero dimensional model, no attempt is made to model the relevant

parameters as a function of parallel distance s‖ along the SOL. In order to

model these parameters one starts with the one dimensional velocity distri-

bution given by the Fokker-Planck kinetic vector equation [5, 81]

vx
∂f

∂x
+
eE

m

∂f

∂vx
=
∂f

∂t

∣∣∣
coll

+ S(x, v) (1.17)

where ∂f/∂t|coll is the change due to collisions other than events where

particles are created or destroyed and S is the difference between particle cre-

ation and destruction rates. Taking moments of this equation by multiplying

by dv,mvxdv,
1
2
mv2xdv, etc. and integrating results in a set of fluid equations

that describe the plasma in 1-dimension. A brief derivation of these can be

found in Stangeby but they can be summarised by a set of three conservation

equations in three unknowns n, v, T by assuming Te = Ti and p = pe+pi and

ignoring viscous stress,

Particle conservation
d

dx
[nv] = Sp (1.18)

Momentum conservation

d

dx
[(miv

2 + 2kT )n] = −mivσ̄v̄innnn (1.19)
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Energy conservation

d

dx

[
1

2
(miv

2 + 5kT )nv − κ0eT 5/2
e

dTe
dx

]
= QR +QE (1.20)

where Sp is the net particle source, QR is the heating source due to net par-

ticle drift and QE is the power source due to hydrogenic recycling. These fluid

equations require significantly less computational time to perform, however

further approximations are required in order to close the equations. Ignoring

heat conduction q‖ allows one to do this. When self-collisionality is high

the particle distribution tends to Maxwellian and q‖ → 0, the equations then

close with only convection appearing in the energy equation. When collision-

ality is lower an approximation can be made of q‖cond = −κ0T 5/2dT/dx this

works for moderate collisionality but fails as collisionality becomes small.

For a rigorous treatment in this regime it is necessary to calculate higher

moments of the kinetic equation that may then be approximated in order to

close the system.

When using these equations for modelling in one dimension it is common

to view the SOL as being in one of two regimes, either sheath limited or

conduction limited. The defining property of these regimes is the existence

or lack of a significant parallel temperature gradient in the SOL.

The Sheath Limited Regime

The sheath limited regime is characterised by the absence of parallel tem-

perature gradients in the SOL and low collisionality. For a given particle

and power source from the bulk plasma the sheath at the targets defines the

conditions in the SOL. This situation can occur without the need for parallel

flow, high parallel conductivity and small temperature gradients can trans-

mit all the power from the bulk plasma to the targets. For the case of low
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heat conductivity it is parallel flow that must carry this power. It should be

noted that Ti need not be constant, assuming that the assumption of Ti = Te

is dropped.

The Conduction Limited Regime

In the absence of strong convective flows parallel conduction can become

the limiting factor for the SOL properties although the sheath still plays an

important role. Due to the lack of significant flow, recycling ionisation is

assumed to occur very close to the targets so any flows that are present are

confined to a thin region close to the targets. Large temperature gradients

characterise this regime.

When modelling the sheath limited regime the obvious assumption to

make is to treat Te and Ti as constant parameters that can be obtained by

some other means than the fluid equations. The energy conservation equa-

tion is not then required and ignoring collisions the particle and momentum

conservation equations become

d

dx
(nv) = Sp (1.21)

d

dx
(minv

2 + nkTi + nkTe) = 0 (1.22)

Plasma parameters calculated from these simplified equations agree sur-

prisingly well with full kinetic treatments[5, 82], particularly considering that

this system is completely collisionless.

In the conduction limited regime the isothermal assumption is invalid and

parallel heat conduction is dominant. The choice of boundary conditions then

becomes critical in this regime. It is possible to specify these boundary con-

ditions entirely at the target and Langmuir probes(1.3.1) incorporated into
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the target provide both density and temperature information. Other diag-

nostics such as Thomson scattering can then be used to further constrain the

solution at other points along the SOL. The question of particle, momentum

and energy sources also becomes more complicated in the conduction lim-

ited regime and it is usually necessary to employ a Monte-Carlo neutral code

such as EIRENE[83] to calculate these sources. The effect of impurities, in

particular radiation, can be dealt with in a similar way using a dedicated

impurity code such as DIVIMP[84].

1.4.4 Modelling the SOL in 2 dimensions

Modelling of the SOL in 1 dimension naturally neglects any cross-field pro-

cesses that occur. Several codes exist that use a multi-fluid approach to

model the SOL in 2 dimensions and include the cross-field drift and diffusion

terms that the 1 dimensional approach does not, notable examples being

SOLPS[77, 85], EDGE2D[86, 87] and UEDGE[88, 89]. For all of these codes

toroidal symmetry is assumed and the remaining 2 dimensions are radial

and either along B or the projection of the parallel direction in the poloidal

plane. The necessary boundary conditions for these codes are complex and

great care must be taken at the four boundaries, the two targets, the LCFS

and the outer SOL or first wall. It is also necessary to specify values for the

anomalous cross field transport coefficients.

The SOLPS package primarily consists of the B2 multi-fluid code[77] and

the EIRENE neutral particle Monte-Carlo code[90]. It has been used exten-

sively on many tokamaks[91–94] and is one of the principle tools for SOL

modelling. Stangeby [95] has used SOLPS to form a simple relationship

between upstream electron density and temperature decay widths and the

power width in the divertor, a vital parameter in the operation of ITER.
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Studies carried out on ASDEX Upgrade[96] have also used SOLPS to un-

derstand the effect of cross-field drifts on plasma flow and target conditions

in the SOL, showing good agreement between simulation and experiment in

the low-recycling regime. SOLPS has also been used to study divertor de-

tachment on ASDEX Upgrade and DIII-D[97], concluding that our current

understanding does not allow effective simulations of detached conditions.

EDGE2D also comprises a multi-fluid plasma solver coupled to a Monte-

Carlo neutral code, although there exists the choice of either EIRENE or

an alternative neutral code NIMBUS[87]. This code has been primarily

used on the JET tokamak although it has also been applied to ASDEX

Upgrade[98] and used as a predictive tool for future devices [99, 100]. Its

use on JET however has been extensive, studying the edge temperature and

density profiles[101], SOL flows [43], migration of carbon-13[102], the effect

of atomic processes on detachment [103] and in-out asymmetry[104]. Results

from the code are also used in cross-code comparisons[105] that help improve

the reliability of simulation results.

The majority of work using the UEDGE code has used data from the

DIII-D tokamak. This has included scenario development[106], studies on

visible carbon emission[107], the dependency of the behaviour of injected

argon on the up-down magnetic balance in double null plasmas[108], studies

of plasma wall interaction in the presence of ELMs[109], the effect of E ×B

drifts on the transport of intrinsic impurities[110] and the importance of edge

transport on core carbon concentrations[111].

UEDGE has also been used in multi-machine studies, such as Groth[112]

who showed the necessity of the inclusion of cross-field drifts to model di-

vertor particle and heat loads on DIII-D ASDEX Upgrade and JET. In this

work enhanced chemical sputtering yields were also required to closely repli-
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cate observed conditions although these enhanced factors may conceal the

fact that some other mechanism is inadequately modelled. The simulated

flow was also shown to be incorrect on the machines studied, although this

issue is also frequently the case for other edge codes. Detachment in the

snowflake divertor on the spherical tokamak NSTX has also been studied us-

ing UEDGE[113] where a gas power loss mechanism was identified that may

contribute to the high recycling seen in the snow-flake divertor simulation.

This work also highlighted the need to improve the DEGAS neutral model

used in the code. ITER simulations to study the effect of a 2nd X-point have

also been carried out[114].

1.4.5 The Onion Skin Method

Sitting between the 1 and 2 dimensional approaches described above is a

modelling technique known as the the Onion-Skin Method, which relies on

the assumption that the 1 dimensional conservation equations are valid over

a finite radial extent. This method treats the boundary plasma as a sequence

of nested flux tubes (fig. 1.2) and applies a suitable SOL model along B for

each tube. This model can be anything from a simple two-point model to

a comprehensive 1D model that solves the 1D conservation equations along

B and includes volumetric sources and sinks for particle momentum and en-

ergy. Boundary conditions are set for each tube, usually at the targets from

Langmuir probe data although upstream measurements from other diagnos-

tics can also be used. This essentially results in a 2D solution derived from

the 1D solutions for each flux tube.

Each flux tube is considered independently with no perpendicular trans-

port between the tubes, this is a marked difference with a full 2-D code. In

the 2-D approach the cross-field diffusivity must be set as an input param-
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Figure 1.2: A typical onion skin geometry in the poloidal plane from a MAST

plasma with the MAST first wall also plotted

eter, in OSM the cross-field fluxes can be extracted from the series of 1-D

solutions using the radial variations of density and temperature across the

target. An excess or deficit between the net particle source along a flux tube

and the particle outflow to the target is attributed to the cross field trans-

port of particles, which is treated as sources and sinks along the length of

each tube[115]. The OSM 2-D plasma solution made up of the individual flux

tubes can be used as a background for neutral or impurity codes that provide

particle sources and sinks. The onion skin method can then be performed

iteratively with these codes to obtain the best plasma solution incorporating
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the effect of these sources and sinks. This approach provides a robust 2D

simulation of the plasma and compares favourably with full 2D models such

as EDGE2D[116].

A code based on the onion skin method and named OSM has been devel-

oped by Stangeby and Elder[84] and has been used on several machines. Neu-

tral behaviour has been studied on Alcator C-Mod[117], cross field transport

in the SOL on JET[118], the effect of including SOL currents in the model

on MAST[119] and the midplane SOL conditions reconstructed on the EAST

tokamak. When compared to the more complex 2D codes the OSM approach

has the advantage of shorter run-times on the order of minutes compared to

hours, days or longer for the 2D approach, meaning it can potentially be used

for basic modelling during experiments. The extensive use of experimental

data in constraining the solution also simplifies the simulation process, so

that a reasonably reliable model of SOL conditions can be inferred quickly.

OSM does not currently include drift terms, casting some doubt on the va-

lidity of the solutions[120], particularly in spherical tokamaks where these

terms can be larger than in standard aspect ratio tokamaks.

1.4.6 Further SOL modelling

The development of ergodic divertors and a requirement for detailed mod-

elling of plasma wall interactions for next generation devices such as ITER

has called for the use of 3D fluid codes such as EMC3[121, 122] and BOUT++[123].

Full kinetic treatments of the SOL remain prohibitive, however more recently

high performance computing environments have expanded the use of gyro-

averaged kinetic treatments of the SOL plasma. Particle properties are av-

eraged around a single gyro-orbit, removing the high frequency gyro-motion

that makes full kinetic treatments intractable. This guiding centre approach
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is used in massively parallel environments by several codes such as XGC[124],

TEMPEST[125], GENE[126], GS2[127], GEM[128] and COGENT[129]. The

coupling of these codes has also improved, with tools such as KEPLER[130]

being used to allow many dedicated codes to be coupled relatively easily.

1.4.7 Kinetic impurity models

The 2D and OSM methods both provide a plasma background which can

then be used as input to kinetic Monte-Carlo codes that follow impurity ions

such as ERO[131], IMPMC[132] and DIVIMP[84]. These codes all follow

impurity ions on the background plasma, including the transitions between

ionisation states. They are commonly used to simulate impurity injection as

the localised source means only a limited number of particles are required

to gather adequate statistics, reducing the computational requirements that

can become prohibitive when modelling a large domain in this manner.

ERO is often used with a background provided by SOLPS, and has been

used in a large number of studies on ASDEX Upgrade. Aho-Mantila[133]

showed that E×B drifts have a significant impact on the carbon migration

in the ASDEX Upgrade divertor. Carbon re-deposition was also studied

by Pugno[58] although these simulations did not include drift terms, which

appear necessary to account for the deposition patterns deviating from the

magnetic field direction. Makkonen[134] used ERO to study the flow of

carbon by injecting methane at the midplane and suspected temperature

gradient forces of driving flow towards the upper divertor in low density

cases.

ERO has also been used on other machines such as JT-60U[135], where it

was used to study asymmetry in divertor carbon deposition, TEXTOR[131],

where material erosion was studied, and JET[136] to study material migra-
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tion and erosion.

IMPMC is now included in the SONIC[137] package along with the two-

dimensional fluid code SOLDOR and neutral code NEUT2D[138]. These

codes have primarily been used on the JT-60U tokamak, Shimizu[139] and

Hoshino[140] have studied impurity transport in detached plasmas, and is

being used extensively in the design of the new JT-60SA tokamak[141–143]

The DIVIMP code has been used on a wide variety of machines with sev-

eral plasma solvers being used to provide the background solution, although

it is commonly bundled with OSM in a package called OEDGE. Lisgo[117]

used this combination to study and improve the simulation of neutral be-

haviour in the C-mod divertor as well as studying detached plasmas in the

DIII-D divertor. McLean and Mu[144, 145] have also used OEDGE on DIII-D

to study CH4 injection experiments. Tungsten transport has been studied on

JET[146] using EDGE2D-EIRENE to provide the plasma solution, with this

work leading to the conclusion that extrinsic impurity seeding is required

to reduce the tungsten source and limit the core tungsten concentrations.

SOLPS has been used to provide background solutions in simulations of car-

bon injection into ASDEX Upgrade plasmas[134, 147]. These simulations

highlighted the importance of accurate modelling of the SOL flow, which is

believed to be a cause of discrepancies between the simulated and measured

carbon deposition. This combination has also been used to make predictions

for tungsten erosion and transport in ITER[148], showing that in divertor

plasma configurations running a tungsten divertor on ITER can maintain a

core tungsten concentration below that required for successful operation.

Drift terms are not included in DIVIMP, when run with OSM providing

the background plasma this means that significant physics is missing from

the model. The use of DIVIMP for ITER predictions further increases the
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importance of this omission. However the interpretive nature of OSM to

some extent mitigates the lack of these terms, especially in light of the poor

replication of plasma flow in current models.

1.5 The MAST tokamak

The Mega Amp Spherical Tokamak (MAST)[149] tokamak is a tight aspect

ratio spherical tokamak with typical major radius R = 0.85m and minor ra-

dius r = 0.5m. During normal operation the plasma has a maximum plasma

current Ip = 0.9MA and toroidal field BT = 0.52T measured at the mag-

netic axis. MAST typically operates in a double null divertor configuration.

The open nature of the spherical tokamak design allows excellent diagnostic

coverage of the plasma. As well as large arrays of divertor Langmuir probes

MAST has several viewing ports at different toroidal locations around the

machine, allowing comprehensive imaging of the plasma. A Thomson scat-

tering system also provides measurements of both the core and edge plasma.

MAST pulses are often referred to as shots and are numbered using a se-

quential numbering system, at the time of writing the latest shot number is

30473. These numbers will be used to refer to a particular discharge.

The lower divertor includes a system named the Divertor Science Facility

(DSF)[150] for inserting samples and probes without any requirement to

vent the machine. This system permits electrical connections and allows

the installation of systems such as the impurity injector described here, a

Retarding Field Energy Analyser (RFEA)[151] and a sample holder for the

introduction of dust[150] in a single day during scheduled breaks in operation.

There are significant quantitative differences between spherical and the

more common large aspect ratio tokamaks, however there is no fundamental
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difference between the two designs. The achievable β (see section 1.2.1) is

significantly higher in spherical tokamaks due to a reduction in both balloon-

ing and kink instabilities. The increased curvature also means that the radial

gradient of magnetic field is larger, resulting in stronger ∇B drifts which can

affect transport in the SOL. The plasma wetted area on the divertor sur-

faces is significantly smaller in a spherical tokamak due to the reduced major

radius. This means that the heat flux to the targets is higher for a given

total power, making the progression to reactor scale machines more difficult.

Results from experiments on spherical tokamaks are generally comparable to

those from large aspect ratio machines, and simulations can be carried out

on both using the same software[152].
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CHAPTER 2

Carbon injector design and testing

2.1 Design motivation

Impurities have a significant effect on plasma performance and can also be

used to alleviate the problems of excessive heat loads on plasma facing com-

ponents (see 1.2.1). An understanding of the transport of any impurities is

therefore of great importance in the design and operation of existing and

future tokamaks. The use of injected impurities in order to further this

understanding is discussed in section 1.3.2. The most common methods of

injection used in previous edge impurity transport experiments are laser ab-

lation and the injection of impurity gases (section 1.3.2). For gas injection

the number of particles injected is often significant when compared to the

plasma density and the injected impurities significantly perturb the plasma.

The injection also occurs over a timescale that is greater than the typical SOL
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dwell time of the plasma so information on timescales shorter than this is

restricted. Laser ablation offers the option of very short plume duration and

accurate control of the number of ablated particles. However this method is

technically very difficult to achieve and expensive. Another method that has

been used previously on the START tokamak is that of ablation from arcs

occurring between electrodes composed of the impurity to be injected, this

work was unfortunately not published. Carbon is one of the more commonly

studied impurities due to its presence in the majority of tokamaks and strong

line emission and is also ideally suited for use as an electrode. Arcs can also

occur on very short timescales ≈ 1µs and the equipment required to produce

them is cheap and readily available. It was therefore decided that an injector

using a short duration arc would be designed to ablate carbon into the SOL

of the MAST tokamak. Data obtained from spectroscopic imaging and other

diagnostics would then be used to model the observed impurity transport.

2.2 The injector design

2.2.1 The spark head

The geometry of the electrodes has a significant effect on the nature and

result of an arc between them. The basic geometries one can envisage are

planar, cylindrical, concentric and spark plug type electrodes. These possi-

bilities can be seen in figure 2.1. Concentric electrodes were chosen for the

prototype design as these have several advantages over the other geometries.

A schematic of this design can be seen in figure 2.2. Concentric electrodes

are simple to build and the inter-electrode gap remains stable under stress.

They also take advantage of the Marshall effect, described below.
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2.3 Injector development

The Marshall Effect

A current discharge between concentric electrodes results in an axial force

on the ions and electrons making up the discharge. This effect was first

published by J Marshall in 1960 [153]. The magnetic field caused by the

current flowing along the central electrode causes a j×B force on the radial

discharge current in the same direction as the positive current, accelerating

the ions and electrons away from the electrode for both possible polarities.

A reasonable approximation for the impulse delivered to the plasma is given

by [153]

∫
t

fdt = ln(r1/r2)

∫
t

I2dt (2.1)

where r1 and r2 are the outer radius of the inner electrode and inner

radius of the outer electrode respectively and I is the discharge current.

It should be noted that at the currents generated in the injector head the

typical magnetic field created is many times smaller than the typical field

of several Teslas found in tokamaks. Due to this the effect is expected to

be weak during operation within MAST but may be augmented at points

around the electrodes that are suitably aligned with the toroidal field.

2.3 Injector development

2.3.1 Test conditions

A dedicated vacuum chamber was built for the development and testing of

the injector. The chamber was largely constructed from components already

owned by the National Centre for Plasma Science and Technology. It uses a

TPH 240 ISO 100 Pfeiffer turbo pump and has a base pressure of 5×10−5Pa,
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2.3 Injector development

significantly lower than the MAST divertor pressure (∼ 10−3Pa). Initial

testing was carried out using a capacitor bank of up to 20nF charged using an

Ultravolt 15A12P4-C power supply capable of delivering 15kV at 0.4mA. The

final design for use on MAST ran significantly lower voltages up to 2.5kV, this

limit was largely due to safety considerations imposed by the MAST team.

In order to accomplish breakdown at voltages below this limit a significantly

higher capacitance of 1.5µF was used in the final system. Triggering was

initially performed using a mechanical switch made in the laboratory, this

was later replaced with an Insulated Gate Bipolar Transistor(IGBT), see

section 2.4.2.

The outer electrode was made up of a carbon cylinder manufactured by

the MAST Special Techniques group. Cylinders of outer diameter 8mm and

inner diameter 3.1mm and 4.1mm allowed for testing of variable gaps between

the inner and outer electrode. The inner electrode consisted of carbon rods

that were available at DCU. For testing the concentric electrodes were fitted

into an SHV clamp connector, allowing easy interchange of the injector head,

see figure 2.3. An aluminium oxide sleeve was used as the insulator between

the two electrodes. This sleeve allowed the end of the electrodes to protrude

by 1-5mm, providing the spark gap itself.

2.3.2 Observed pressure increase

Large pressure increases in the vacuum chamber were observed after the test

discharges, figure 2.4. Although variable, this pressure increase was depen-

dent on the chamber pressure and both the capacitance and voltage used.

The increase was measured using a Tektronix TD3000 oscilloscope connected

to a Pfeiffer ion-combi gauge. The initial rise occurred over a timescale of

100ms immediately after each discharge, this leads to the conclusion that
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2.3 Injector development

Figure 2.1: Possible electrode geometries

Figure 2.2: Conceptual design for the

carbon injector

Figure 2.3: The carbon electrodes of

the injector head fitted to an SHV

clamp connector
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2.3 Injector development

the increase was due to material ablated from the injector. However, ablated

carbon is likely to stick to any surface it encounters so is unlikely to have

diffused to the pressure gauge mounted at the end of a short KF25 elbow

tube mounted above the chamber. The pressure increase was then suspected

to be due to hydrogen and oxygen from the dissociation of water present

on the injector head. This was then confirmed by using a mass spectrom-

eter attached to the vacuum vessel, a significant increase in both hydrogen

and oxygen was observed after each discharge, although a small increase in

the carbon content was also observed. This is also consistent with the de-

pendence on voltage and capacitance, the higher the energy released during

discharge the more water is dissociated.

~100ms

~5x10  mbar
-6

Figure 2.4: Pressure increase observed after a 10kV 20nF discharge

This presented a significant issue regarding the sparker operation on

MAST where there is essentially zero water content. If it is the water initiat-

ing the breakdown then the system would not work on MAST or any other

tokamak. In order to test this efforts were made to reduce the water content

in the chamber, which was measured using a Pfeiffer QMS200 mass spec-

trometer. While at atmosphere the vessel was baked to remove water from

the walls, the vessel was purged with a flow of nitrogen and then pumped

down, finally the vessel was cooled to cause the water vapour to condense
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on the chamber walls. This only partially succeeded in reducing the water

content although the chamber pressure was reduced to 3× 10−5Pa. At this

pressure the mono layer formation time is approximately 4s, using the rela-

tion τmlf ≈ 4/P [154], this allows the possibility of testing the discharge in

the absence of water by repeatedly firing the injector at a frequency greater

than 1Hz, effectively cleaning the injector head and not allowing for the

formation of a water layer before each discharge. The injector continued to

break down in these conditions verifying that breakdown was possible in the

absence of a water layer. The associated pressure increase also decreased

after the initial discharges, showing that water dissociation associated with

the discharge was significantly decreased and attributable to water existing

as vapour close to the injector head.

2.3.3 Ablated mass measurements

The most important parameter of most injection systems is the quantity

of material injected. This can be measured using quartz crystal monitors

placed in front of the injector (figure 2.5, carbon ablated from the injector

then adheres to the face of the quartz crystal, changing its resonant frequency.

The frequency shift for a rigid mass evenly deposited onto the crystal is given

by the Sauerbrey equation[155]

∆f ≈ −2∆mf0
A
√
ρqµq

(2.2)

for ∆f/f0 < 2%. Where f0 is the resonant frequency, ∆f is the change in

frequency, ∆m is the change in mass, A is the piezo-electric active area, ρq is

the density of quartz (2.648× 103kgm−3) and µq is the shear modulus of the

crystal (2.947 × 1010kgm−1s−2). The crystals were mounted in a specially

made probe that can be seen in figure 2.5.
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An intellimetrics IL150 Quartz Crystal Growth Rate Monitor was used

to drive the crystal and the thickness measurements were then converted

into masses. There are large uncertainties in the plume size and quantity of

carbon sticking to the crystal surface, however a lower limit can be placed on

the mass of carbon ablated by each discharge. The dependency of ablated

mass on the discharge voltage and stored charge can also be investigated.

The IL150 provides a measure of deposited thickness in nanometres, in

order to translate this measure into a mass it was assumed that the ablated

carbon formed a uniform coating on the monitor. Although this is clearly

not the case the uncertainties already present in the measurement make this

a reasonable assumption. The portion of the crystal exposed to the plume is

circular with diameter 8mm, making a total area of approximately 50mm2.

The IL150 takes as input the density of the deposited material and this was

set at the density of amorphous carbon 2g.cm−3 in the units used by the

IL150. This gives an ablated mass of ≈ 10−7g/nm, equivalent to 6 × 1015

atoms/nm.

Using the lossy mechanical switch deposition experiments were carried

out using 3-5kV and a capacitance of 200nF, equating to a stored energy

of up to 2.5J. No magnetic fields were applied to the plasma. Due to the

low sensitivity of the monitor crystal 5 shots were performed before each

measurement. A series of shots were also performed immediately before the

measurements in order to remove any water layer that may have formed on

the injector head. At 3kV no breakdown occurred however breakdown did

occur at 3.5kV. At 4kV the average deposition for each pulse was 0.04nm

while at 5kV the average deposition was 0.06nm. This equates to 2.4× 1014

particles at 4kV and 3.6× 1024 particles at 5kV.
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2.3.4 Imaging

High speed imaging of the plume was also carried out in order to confirm

the plume duration and extent. An Andor DH5H7 18F 03 single shot visible

camera was used to image the plume at different times during the discharge.

The camera was triggered using a Stanford DG535 pulse delay generator

connected to a C-T current monitor located between the capacitor bank and

the spark head. The delay was varied from 0ns to 3000ns and the integration

time from 5ns to 60ns. A capacitor bank of 20nF was used at a voltage of 8kV

giving a stored energy of 0.64J. The extent of the plume is very limited, up to

5mm, however it is expected that the extent will increase as the capacitance

used is increased towards 1µF . Looking at figure 2.6, the duration of the

plume can be seen to be less than 3ms, figure 2.6 shows the last remnants of

the plume. This duration matches the duration of the current pulse measured

using a Bergoz C-T current monitor, see figure 2.7.

Scanning electron microscopy and energy dispersive X-ray spec-

troscopy

A significant concern raised by the MAST team was that of contamination

of the vessel by the injector. In order to verify the purity of the ablated

material the crystal used for ablated mass measurements was subjected to

Energy Dispersive X-Ray spectroscopy (EDX) once a significant carbon layer

had been built up. Spectrograms taken with beam energies of 10 and 20kV

can be seen in figure 2.8. The depth of penetration of the beam is dependant

on the energy of the beam, the gold line seen in figure 2.8 b is due to the

beam penetrating through the thin layer of deposited carbon and interacting

with the gold substrate of the crystal. The 10kV spectrogram can therefore

be taken to be that of the carbon layer on the crystal. The only significant

45



2.3 Injector development

(a) (b)

Figure 2.5: a) Probe containing a quartz crystal, the discolouring evident

on the crystal surface is due to ablated carbon. b) Side on schematic of the

quartz crystal placed in front of the injector head for ablation measurements.

(a) (b) (c) (d) (e) (f)

Figure 2.6: Visible images at 0, 50, 500, 1000, 2000 and 3000 nanoseconds

after the beginning of the discharge. Figures a to d were taken with a 40ns

integration time and figures e and f with a 20ns integration time. Each image

is 10mm by 10mm in the plane of the injector head which is on the right hand

side of each image.
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non-carbon element detected is fluorine and this is likely to be due to con-

tamination from the atmosphere or contact with skin. It should be noted

that EDX spectroscopy is particularly insensitive to carbon, strengthening

the conclusion that the material ejected from the injector is largely pure

and not contaminated by the ceramic used in the injector head or any other

source.

The EDX technique is performed in a Scanning Electron Microscope

(SEM), as part of the process high resolution images were taken of the crystal

surface. This provides useful information on the size of the particles that are

ablated from the injector, ideally the carbon would be produced in purely

ionised form, however in reality this is not the case and significant quantities

of neutral carbon are produced along with larger carbon fragments. Fig-

ure 2.9 shows one image of the surface and covers an area of approximately

23mm×18mm. One large particle of carbon measuring about 100µm can be

seen in the lower half of the image. Particles of this size are likely to perturb

the plasma so that it may be necessary to include a fine mesh in front of

the injector to catch large particles such as these. Other than this and a

few other smaller particles the carbon deposition appears uniform, implying

that a significant quantity of the ablated material consists of particles on the

sub-micron scale and carbon ions.

2.4 Final design

2.4.1 The injector head

The spark head used for laboratory testing used small quantities of adhesive

to hold the carbon electrodes in place. This is not suitable for use in a

tokamak environment so the final design required that the components in
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Figure 2.7: The current pulse for an 8KV 20nF discharge. The classic ringing

of a capacitor discharge can be seen as the current drops below zero and

recovers.

(a) (b)

Figure 2.8: EDX spectrograms for beam energies of 10kV and 20kV showing

no significant contamination other than a small quantity of fluorine that is

likely due to external contamination
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the spark head be held together mechanically. Aluminium oxide is also not

suitable for use in a tokamak so boron nitride was used as the insulator.

The electrodes and insulator were held in place by incorporating a series of

steps in their design, a pair of springs then holds the components in place,

see figures 2.10 and 2.11. Before installation on MAST the injector head

was cleaned and baked in vacuum for 24 hours to remove any contamination

caused during assembly. An image of the assembled head can be seen in

figure 2.13

A Langmuir probe was included in the head design and can be seen in

the top right corner of figure 2.10 and in closeup in figure 2.14. This probe

provides a Temperature/Density measurement close to the point of injection.

It also provides a good indication of the passing time of the strike point over

the DSF as the ion saturation current peaks as the strike point crosses the

Langmuir probe. The signal from the LP is recorded at 1MHz by the existing

Langmuir probe system on MAST.

The cables used to carry the electrical pulse were 311-KAP50 coaxial cable

supplied by Allectra. Coaxial cable was chosen as it was believed the outer

conductor would shield the vessel from electrical noise. The inner conductor

of this cable is just 0.45mm, although this is sufficient for transmitting the

electrical pulse it proved very fragile and made construction of the probe

head difficult. The cable is soldered to the copper contacts using flux-less

solder and this connection often broke when the head was being assembled.

It is likely that for future designs a larger, possibly non-coax wire will be

used.

Full manufacturing drawings of the injector head mounted on the DSF

can be seen in appendix A.
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2.4.2 Power supplies and triggering

The electrical pulse that creates the spark is delivered by a bank of capacitors

located under the MAST vessel in a box installed for DSF specific equipment.

All the circuitry to charge and trigger the capacitor bank is contained in a

polycarbonate box that will be referred to as the Injector Power Supply or

IPS. This box is temporarily mounted in the permanent DSF box. Power

and signal cables installed in the DSF box are connected to the IPS. The

layout and operation of this box can be seen in drawings M115-02-101 and

M115-02-102 located in Appendix B.

The capacitor bank itself consists of 10 0.15µF polypropylene capacitors

mounted in parallel. The box electronics are powered by a Calex 24V DC

power supply. A Spellman MPS2.5kV10W24V HV power supply was used

for capacitor charging, this unit has a peak voltage of 2.5kV and a maximum

current of 4mA. An optical trigger signal is received from the MAST data

acquisition system and converted to a 5V electrical signal that is used to drive

an IXYS IGBT which triggers the capacitor discharge across the injector

electrodes. The IGBT (Insulated Gate Bipolar Transistor) is a power semi-

conductor device that combines an isolated gate FET and a bipolar power

transistor to achieve fast switching at high voltages and currents. As the

peak voltage used in the final design is 2.5kV a single IXGL75N250 2.5kV

IGBT was sufficient while during testing several of these were used in parallel

to switch voltages up to 5kV. The triggering circuit can be seen in appendix

B.

The HV power supply is regulated by a 0-5V signal from the MAST con-

trol system and returns the actual operating voltage via a 0-5V output signal.

Both these signals use isolation amplifiers to protect the MAST diagnostic

systems. A Bergoz CT-B0.05 current transformer is situated on the capacitor
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bank output and provides a measure of the discharge current that is passed

to the MAST data acquisition system.

An optical enable signal is required for the HV supply to operate to avoid

the capacitors becoming accidentally charged when not mounted in the DSF

box. There is also an interlock on the IPS lid comprising of a normally closed

high voltage relay that is only opened when the 24V supply is on and the lid

is closed. If the 24V supply fails or the lid is opened the capacitors are then

discharged through a 300Ω resistor in a fraction of a second.

2.4.3 Modification after initial commissioning

During the first set of commissioning experiments in MAST campaign 8,

October 2011 the IGBT switch failed and was replaced so as to allow further

experiments. Although the cause of this was not known it is believed that it

was caused by a reverse voltage applied to the IGBT, possibly as the strike

point crossed the injector head in a beam heated discharge. The power

supplies were not disconnected from the injector head between experimental

sessions due to the difficult access during operations. To mitigate this risk

a transient suppression diode was added in parallel to the spark gap for the

second set of experiments in MAST campaign 9, June 2013.

2.5 Installation on MAST

The spark head was mounted in the head of the Divertor Science Facility

(DSF)[150], see figure 2.15. This system was developed on MAST to allow

samples and diagnostics easy access to the MAST divertor plasma in a similar

way to the DiMES system on DIII-D[156]. The DSF allows probes to be in-

stalled in the MAST divertor without venting the machine and is placed at a
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radial location of 0.98m. Before installing the head it was cleaned and baked

for 24 hours to remove any contaminants from the manufacturing and assem-

bly. The head was then installed on the DSF in a vacuum chamber isolated

from the MAST vessel by a gate valve. This process was completed in under

2 hours. Once this was done the vacuum chamber was pumped down using

an external rotary pump and a turbo-molecular pump to bring the pressure

to that inside the MAST vessel. Heating straps were then placed around

the chamber which was baked for several days to remove any contaminants

introduced in the installation process. The gate valve to the MAST vessel

was then opened and a pneumatic pump used to lift the DSF and injector

head into position in the MAST divertor. Figures 2.16 and 2.17 show the

injector head in its final location in the MAST divertor.
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Figure 2.9: SEM image of carbon deposited on the surface of a quartz crystal

microbalance. Carbon particles up to 100µm can be seen, the overall width

of the image is approximately 20mm.
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Figure 2.10: Close up of the injector head on top of the DSF probe. The

carbon electrodes, boron nitride insulators, copper contacts and the PEEK

support can all be seen as well as the integrated Langmuir probe.

54



2.5 Installation on MAST

Figure 2.11: Exploded view of the injector head on top of the DSF probe

showing the stepped construction allowing the components to be held in place

without the use of adhesives.
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Figure 2.12: Cutaway view of the assembled injector head.

Figure 2.13: Image of the injector head prior to installation on MAST.
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Figure 2.14: Cutaway view of the assembled injector head showing the inte-

grated Langmuir probe.
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Figure 2.15: Schematic overview drawing of the DSF showing the insertion

system and the independent pumping system. The drawing shows the DSF

configuration when the head is fully inserted into the machine
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Figure 2.16: Cutaway of dummy injector head in place in the MAST divertor.

Figure 2.17: Schematic of the the installed injector head seen from above.
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CHAPTER 3

Experimental method and data

3.1 Experimental approach

3.1.1 First use

Commissioning of the injector was carried out on MAST during September

2011. Images of impurity injection were subsequently taken in two sets of

experiments, once in October 2011 during campaign 8 and then again in

June 2013 during campaign 9. The data used for comparison with simulation

was from the second set of experiments, however a brief description of the

commissioning process and initial experiments and is included in appendix

C.
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3.1.2 Diagnostics

In order to make useful comparisons of impurity transport between mod-

elling and experiment it is important to accurately characterise the back-

ground plasma. This is particularly true when using the Onion Skin Method

(see 1.4.5). Langmuir probes positioned in the MAST divertor[157] and a

mid-plane Thomson scattering system[158, 159] provide electron density and

temperature data that forms the basis for the OSM reconstruction of the

background plasma. These diagnostics are available routinely on MAST.

The goal of the experiments was to image injected carbon at different

points relative to the outer strike point from a few centimetres into the private

flux region to a few centimetres into the outer SOL. This is achieved by

varying the timing of the injection as the strike points sweep across the

targets. An initial guess of the location of the strike point relative to the

DSF at a given time was made using EFIT [160] equilibrium construction.

This was then compared with data from the Langmuir probe mounted on the

injector head and with data from the divertor Langmuir probes. There are

often discrepancies between the values obtained from EFIT and those from

the Langmuir probes, this will be discussed on a shot by shot basis where

appropriate.

The primary diagnostic requirement for this experiment is for the fast

visible cameras positioned in sectors 1 and 11 of the MAST vessel, see figures

3.1 and 3.2. Photron Ultima APX-RS cameras were used at both locations.

A significant part of the experimental process was concerned with obtaining

the highest temporal resolution possible. Taking the plasma sound speed

(equation 1.1) as an estimate for the ion velocity using typical near target

temperatures of Ti = Te = 25ev gives cs ≈ 5x104ms−1. An ion moving at

this speed would take 50µs to travel 10cm, frame rates better than this are
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therefore required to resolve the formation and transport of the plume. In

order to achieve a strong signal the standard 50mm lenses on the fast cameras

was replaced by a 25mm lens that reduced both the field of view and the

spatial resolution by a factor of 2 but allowed shorter integration times so

that the cameras could be run at 75kHz-100kHz, giving a time between

frames of 10− 13µs.

Band-pass filters were used to select the carbon II and carbon III lines

emitted by the ablated carbon as it is ionised within the SOL. The carbon

II filter on sector 1 had a bandwidth of 2.76nm centred around 514.91nm

and the carbon II filter on sector 11 had a bandwidth of 2.75nm centred on

514.79nm, although the primary emission of the carbon II multiplet is centred

at 514nm this wavelength is within the range of both filters. The carbon III

filter had a bandwidth of 1.42nm centred around 465.29nm, encompassing

the carbon III multiplet also centred around 465nm. Filters for the Dα line at

656.1nm and CI line at 910nm were also fitted to the cameras on a remotely

changeable carousel. In order to achieve a strong signal the standard 50mm

lenses on the fast cameras was replaced by a 25mm lens that reduced both

the field of view and the spatial resolution by a factor 2 but allowed shorter

integration times so that the cameras could be run at 75kHz-100kHz, giving

a time between frames of 10− 13µs.

Having access to two cameras at different positions allowed the choice of

either running the same filters on both cameras or to run two different filters.

Using the same filters provides tighter constraints on the plume dynamics for

a single charge state. This was restricted to the carbon II line as carbon III

filters were not available for both cameras. In addition the carbon II emission

was generally too weak to show the plume evolution. Using two different

filters has the obvious advantage of showing the evolution of the ionisation
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Figure 3.1: View of the DSF from the fast camera situated at a view port in

sector 1 of MAST

Figure 3.2: View of the DSF from the fast camera situated at a view port in

sector 11 of MAST
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states of the injected carbon providing additional modelling constraints.

Flow data was also available for some of the experimental sessions, this

was provided by a coherence imaging diagnostic (see 1.3.1) using the carbon

III emission line[1]. The MAST instrument operates with each pixel corre-

sponding to 1.5mm in the plasma cross-section with a vertical resolution of

approximately 12 pixels. This diagnostic produces a 2D map of line averaged

flow with a temporal resolution of 1ms and a flow resolution of approximately

1km/s.

3.2 Experimental data

Although useful data was obtained during the first experimental sessions

detailed analysis and simulation was not performed before the opportunity

of a further set of experiments in June 2013. As MAST was due to begin

a shutdown for the upgrade to the super-X divertor this would be the last

possibility for experiment over the timescale of this project. No external

heating was used in the initial experiments due to the risk of damage to the

injector system. The temperature and density of the plasma was therefore

relatively low and the relevance to future devices limited. The data shown

here was taken during an experimental session using beam heated plasmas

on Thursday 20th June 2013.

3.2.1 Plasma configuration

Two plasma configurations were used in the final experimental session. A

single beam heated L-mode plasma based on reference 28787 and a 2 beam

heated ELM-free H-mode plasma based on reference 28982. An ELM-free H-

mode was chosen so as to avoid the complexities in both measurement and
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simulation introduced by the ELMS. The strike point in the reference H-mode

shot did not cross the injection location, the P2 and solenoid coil current were

increased to move the strike point and allow injection into the outer SOL

although not at the strike point itself. At the injection times the L-mode

plasmas parameters were Ip ≈ 900MA, BT ≈ 0.55T , ne ≈ 13 × 1019m−2

and PNBI = 1.8MW where PNBI is the total power from Neutral Beam

Injection (NBI). The H-mode parameters were Ip ≈ 900MA, BT ≈ 0.55T ,

ne ≈ 25 × 1019m−2 and PNBI = 3.5MW . In total data was taken for 6

shots, table 3.1 shows the injection timing, strike point position given by

EFIT, the distance between the injection location and the strike point and

the camera filters used for each shot. For the L-mode shots a charging voltage

of 1.5kV was used, equating to a stored energy of 1.7J , for the H-mode shots

only limited emission was seen at this voltage so it was increased to 2.4kV ,

equating to a stored energy of 4.3J .

Shot tspark Strike point ∆R Sector 1 Sector 11

(ms) position (m) (cm) filter filter

29125 - L-mode 250 0.981 0.4 Carbon II Carbon II

29126 - L-mode 250 0.976 0.9 Carbon II Carbon II

29128 - L-mode 240 0.971 1.4 Carbon I Carbon III

29129 - L-mode 240 0.973 1.2 Carbon I Carbon III

29139 - H-mode 320 0.985 0.0 Carbon II Carbon II

29142 - H-mode 320 0.989 -0.4 Carbon I Carbon III

Table 3.1: Shots from the final experimental session

For reference time traces for Dα emission, plasma current, neutral beam

total injected power, line integrated density and toroidal magnetic field on

the magnetic axis for the L-mode and H-mode shots can be seen in figures 3.3
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Figure 3.3: Dα emission, plasma current, neutral beam total injected power,

line integrated density and toroidal magnetic field on the magnetic axis for

the L-mode shots 29125, 29126, 29128 and 29129. The impurity injection

times are denoted by dashed vertical black lines.

and 3.4. The line integrated density data was not available for shot 29139.

3.2.2 Injection duration

It can reasonably be assumed that ion and neutral injection occurs predomi-

nantly while current is flowing across the spark gap from the capacitor bank.

The measured current leaving the capacitor bank for the 6 shots of inter-

est can be seen in figure 3.5. The current can be seen to oscillate or ’ring’

as is expected from a capacitor discharge. The width of the initial positive

current surge is approximately 10µs while the ringing continues for 40µs for

the L-mode shots and 60µs for the H-mode shot, which used a higher charg-
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Figure 3.4: Dα emission, plasma current, neutral beam total injected power,

line integrated density and toroidal magnetic field on the magnetic axis for

the H-mode shots 29139 and 29142. The impurity injection time is denoted

by a dashed vertical black line.
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3.2 Experimental data

ing voltage (see 3.2.1). An estimate for the injection duration can also be

obtained from the CCD imaging, figure 3.6 shows the time evolution of the

emission observed by the CCD at the point of injection. Although there is a

large degree of uncertainty in this method the duration of the high emission

peaks support the view that the injection occurs over the duration of the

ringing cycle and not just during the initial current surge or significantly

after the discharge has ended. A further inaccuracy arises due to the capac-

itance of the transmission line from the power supplies to the injector head.

Charge may build up in the coaxial cables which can then discharge across

the spark gap at a later time.

3.2.3 Injection location

Identifying the injection location relative to the strikepoint is very important

when comparing experiments with simulation. For the L-mode shot injection

was performed at 2 locations, due to the limited experimental time available

only 1 injection location was performed for the H-mode shot. Analysis is

presented for the three locations. Figures 3.7, 3.8 and 3.9 each show the

strike point location calculated from EFIT, data from the divertor Langmuir

probes and data from the injector Langmuir probe for the three injection

locations.

Plasma perturbation

The on-board Langmuir probe provides a means of estimating the perturba-

tion to the plasma at the targets caused by the injection. The LP ran at a

frame rate of 6.5× 10−5s, approximately 15kHz longer than the spark dura-

tion however any significant effect would likely be visible in the data. Figure

3.10 shows the measured saturation current against time for the 6 shots of
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3.2 Experimental data

(a) 29125 & 29129 (b) 29126 & 29128

(c) 29139 & 29142

Figure 3.5: Injector discharge current measure by the integrated current

transformer. The solid lines show the current from the first shot in each plot

while the dashed line the second.
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3.2 Experimental data

(a) 29125 (b) 29126

(c) 29139

Figure 3.6: Maximum carbon II emission observed within 5 pixels of the

injection location for the three shots 29125, 29126 and 29139. This provides

an estimate of the duration of carbon injection of approximately 40µs for the

L-mode cases and 60µs for the H-mode case.
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3.2 Experimental data

(a) EFIT (b) Divertor LPs

(c) Injector LP

Figure 3.7: EFIT and LP data from shot 29125 showing the strike point

position at the injection time of 250ms. a) Strike point location plotted

against time shows the strike point moving outwards until it crosses the

injector head then moves inwards again. b) Radial density profile from the

divertor Langmuir probes, the strike point lies close to the peak of this profile.

c) Saturation current from the on-board Langmuir probe plotted against time

showing an increase just before the injections time as the strike point crosses

the injector.
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3.2 Experimental data

(a) EFIT (b) Divertor LPs

(c) Injector LP

Figure 3.8: EFIT and LP data from shot 29126 showing the strike point

position at the injection time of 240ms. a) Strike point location plotted

against time shows the strike point moving outwards until it crosses the

injector head then moves inwards again. b) Radial density profile from the

divertor Langmuir probes, the strike point lies close to the peak of this profile.

c) Saturation current from the on-board Langmuir probe plotted against time

showing an increase just before the injections time as the strike point crosses

the injector.
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3.2 Experimental data

(a) EFIT (b) Divertor LPs

(c) Injector LP

Figure 3.9: EFIT and LP data from shot 29139 showing the strike point

position at the injection time of 320ms. a) Strike point location plotted

against time shows the strike point moving outwards until it crosses the

injector head then moves inwards again. b) Radial density profile from the

divertor Langmuir probes, the strike point lies close to the peak of this profile.

c) Saturation current from the on-board Langmuir probe plotted against time

showing an increase just before the injections time as the strike point crosses

the injector.
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3.2 Experimental data

interest. It can be seen that there is no evidence for significant perturbation

of the background plasma.

3.2.4 Electron temperature and density data

Target data

Langmuir probes are installed on both the upper and lower divertor on

MAST. For the six shots of interest strike point data was only available

from the outer divertor arrays. In the case of the upper inner divertor probes

the amplifier used to drive the probes was used to drive the probe on the

injector head. For the lower inner divertor the strike point was too high to

register on the probes at the time of the injection. For shot 29139 no Lang-

muir probe data exists however shot 29142 was a repeat of this shot so the

data taken in 29142 is used for simulation of 29139. Data for shots 29125,

29126 and 29139/29142 can be seen in figures 3.11, 3.12 and 3.13.

A spline fit to the data has also been plotted over the raw data. This

fit was used as input for simulation, see section 5.2.2. The data has been

averaged over 3 timeslices from centre on the injection time. The lower target

data for shot 29139 has also been shifted radially so that the density peak

aligns with the strike point location calculated by EFIT as there is significant

error in the EFIT reconstruction. For the L-mode shot 29126 and H-mode

shot 29139 the upper divertor temperature data appears to be purely noise,

this data has been fixed at an value of 6eV. The initial data can be seen

as crosses on all plots. In the presence of magnetic fields Langmuir probes

are sensitive to the angle of incidence of the field, this has been accounted

for simplistically by using the projected area of the Langmuir probes with

respect to the incident magnetic field.
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3.2 Experimental data

(a) 29125 (b) 29126

(c) 29139 (d) 29129

(e) 29129 (f) 29142

Figure 3.10: Saturation current plotted against time taken from the on-board

Langmuir probe. There is no discernible perturbation seen at the injection

time for each shot, shown by a dashed vertical line.
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3.2 Experimental data
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(a) Upper divertor
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(b) Lower divertor

Figure 3.11: Outer target electron density and temperature data against

normalised poloidal flux for L-mode shot 29125. The measured data is rep-

resented by crosses and the data used in simulation by the solid line.
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(b) Lower divertor

Figure 3.12: Outer target electron density and temperature data against

normalised poloidal flux for L-mode shot 29126.The measured data is repre-

sented by crosses and the data used in simulation by the solid line.
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3.2 Experimental data
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(b) Lower divertor

Figure 3.13: Outer target electron density and temperature data against

normalised poloidal flux for H-mode shot 29139. The measured data is rep-

resented by crosses and the data used in simulation by the solid line.
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3.2 Experimental data

Midplane data

The Thomson scattering system on MAST was operated in burst mode,

whereby 8 measurements are taken 500µs apart over a 3.5ms interval giving

improved diagnostic coverage at the time in question. This also provides a

measure of the potential perturbation caused by the injection. No significant

difference was observed in the density or temperature signals after the injec-

tion, showing that any perturbation caused by the injection was not large

enough to propagate upstream as far as the midplane. Figure 3.14 show the

density and temperature data for shots 29125, and 29139 averaged over the

5 time slices. Spline fits are included as for the target data. Data from the

low field side and high field side were overlayed before averaging. Ideally

one would use the respective data from the low and high field sides, however

the noise on the low field side data made this data unusable for modelling

purposes.

3.2.5 Flow data

Flow data taken from the coherence imaging diagnostic (see section 1.3.1)

can be seen for shots 29125, 29126 and 29139 in figure 3.15. The measured

flow values are line averaged along the line of sight of the diagnostic. The

data seen here is projected from the image plane onto the R,Z plane where

the line of sight is tangential to the toroidal magnetic field and do not take

into account either the field line angle or the distribution of flow along the

line of sight. However the principle contribution to the average flow is from

the tangential component of the line of sight, so that the values serve as

a useful guide for comparison with simulation. This data will be discussed

further in section 5.2.3.
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3.2 Experimental data
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(a) Shot 29125
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(b) Shot 29139

Figure 3.14: Midplane electron density and temperature data for shot 29125

and 29139 against normalised poloidal flux. Data from the high and low field

sides have been combined.
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3.2 Experimental data

(a) 29125 (b) 29126

(c) 29139

Figure 3.15: Flow data taken using the coherence imaging diagnostic mea-

suring carbon III emission [1].
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CHAPTER 4

Image processing and analysis

4.1 Acquired CCD data

The data from the filtered fast cameras is the principle diagnostic data re-

sulting from the injection experiments. Figures 4.1 and 4.2 show unprocessed

images from both sectors showing the camera view and an example of injec-

tion respectively. Although these shots are from the first set of experimental

sessions and will not be discussed further they are useful as an example of

the raw data taken by the cameras.

For shots 29125 to 29142 the camera on sector 1 ran with a frame rate

of 75kHz while the camera on sector 11 ran at 100kHz. Both cameras

integrated over the full duty cycle with integration times 13.3µs and 10.0µs

respectively. The remainder of this section will discuss the images taken and

the processing applied to each image for shots 29125, 29126, 29128, 29129,
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4.1 Acquired CCD data

(a) Sector 1 (b) Sector 11

Figure 4.1: Unfiltered images from both sectors showing the actual camera

views.

(a) Sector 1 (b) Sector 11

Figure 4.2: Unprocessed images from both sectors showing CII filtered images

from shot 27075. Injection location 4cm into the private flux zone with an

integration time of 33µs.
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4.2 Magnetic field projection

29139 and 29142.

4.1.1 Camera Calibration

Only one of the Photron cameras used for the imaging was calibrated in the

laboratory, it is assumed that the other camera, of identical make, has the

same sensitivity. Although this is unlikely to be strictly true there is a high

level of error inherent in the calibration, making this assumption valid within

errors. Calibration was performed in a laboratory environment using a light

source with a set luminance of 24.723kcd/m2. The calibration images and

a horizontal slice of the calibration coefficients for the carbon II, carbon III

and Dα filters can be seen in figure 4.3, no calibration data was taken for the

carbon I filter.

4.2 Magnetic field projection

The goal of this thesis is to compare the parallel transport of impurities

with simulation. This is quantified by projecting the magnetic field onto the

images taken and measuring the emission along the projected field line. It

is assumed that transport along the field line dominates so that the injected

carbon remains bound to the field line and any observed emission originates

from that field line. This can then be compared to the emission from the

relevant flux tube in the simulation.

4.2.1 Camera registration and field line projection

In order to accurately project the magnetic field onto the captured images

it is necessary to accurately know the 2 dimensional magnetic field and the

position and optical characteristics of the cameras. The magnetic field is
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4.2 Magnetic field projection

(a) CII (b) CII

(c) CIII (d) CIII

(e) Dα (f) Dα

Figure 4.3: Calibration curves for the carbon II, carbon III and Dα filters.
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4.2 Magnetic field projection

Parameter Sector 1 Sector 11

no x pixels 96 128

no y pixels 128 64

x centre 48.5 64

y centre 64.5 128

focal length 5.8mm 5.5mm

x position 0.68m -1.47m

y position 2.21m 1.50m

z position -1.18m -1.34m

pitch 30.6◦ -51.45◦

roll -112.5◦ -109.0◦

yaw 170.9◦ -164.0◦

pixel size 17µm 17µm

Table 4.1: Camera registration

obtained from EFIT, while the camera position must be calculated using

software available on MAST. Camera images are compared to wire-frame

models of the MAST vessel and matching pixels are manually indicated on

the image and the model. The software then performs a minimisation on the

variable parameters of the system. The calculated parameters can be seen for

both cameras in table 4.1. The locations given in table 4.1 result in a spatial

resolution at the point of injection of 5.1mm/pixel for the sector 1 camera

and 4.5mm/pixel for the sector 11 camera. At the furthest visible extent of

the plume the resolution becomes 6.2mm/pixel for the sector 1 camera and

7.8mm/pixel for the sector 11 camera.

In order to project field lines onto the camera images it is necessary to

first calculate the path of the field line. This is done using a fourth order
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4.3 Image processing

Runge-Kutta method described here.

P0 = (R,Z,Φ) (4.1)

k1 = P0 +
δxB0

2× |B|
(4.2)

k2 = k1 +
δxB1

2× |B|
(4.3)

k3 = k2 +
δxB2

2× |B|
(4.4)

Pi+1 = Pi +
1

6
(k1 + 2k2 + 2k3 + k4) (4.5)

The field line is followed in both directions from a given starting point pro-

viding a set of points in 3 dimensions. These points are then projected onto

the image plane of the camera to give the final projection.

4.3 Image processing

In order to clearly identify the injected plume the plasma background must

be subtracted from the images of the injection. This is done using the frame

immediately before the injection and results in a clearly defined plumes.

A contour map is used to show the relative emission intensity from each

plume in successive frames after the injection. Figures 4.4 to 4.15 show these

background subtracted images filtered to the carbon II emission line for both

sectors. Magnetic field lines have been projected onto the image, the first of

these originates at the injection location, while further field lines are added

at regular intervals of poloidal angle in order to aid the visual interpretation

of the images. In the case of shot 29125 significant emission in the frame

taken at the injection time appears at a different location to the centre of

the DSF. This appears to be approximately 2cm above the top of the injector

head and so the projected field line is taken to originate at this point. This is
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4.3 Image processing

likely due to neutral carbon being injected upwards until it is ionised by the

hot plasma close to the separatrix and provides evidence that the injection

location was inside the outer strike point for this shot and, not on the strike

point as indicated by EFIT and the divertor Langmuir probes (see 3.2.3).

For shots 29126 and 29139 the initial emission appears close to the centre of

the DSF so the projected field line is originated at this point.

4.3.1 CII emission

For shots 29125, 29126 and 29139 carbon II filters were used on both cameras.

Figures 4.4 to 4.9 show calibrated emission from each of these cameras as

well as projections of the magnetic field lines originating at the divertor to

aid in visualisation.

4.3.2 CI and CIII emission

For shots 29128, 29128 and 29142 a carbon I filter at 910nm was used on the

sector 1 camera and a carbon III filter at 465nm was used on the sector 11

camera. Background subtracted images of these shots can be seen in figures

4.10 to 4.15 along with field line projections as in the previous images. None

of the images taken using carbon III filters on sector 11 show significant

emission aligned with the magnetic field apart from at the injection location,

however the full set of images has been included for completeness. Some

emission can be seen in the sector 1 view of H-mode shot 29142 using a CIII

filter, however this emission is only just detectable by the camera and only

just above the level of noise. It should be noted that for this shot the highest

charging voltage of 2.4kV was used and as an H-mode plasma conditions are

hotter than in the 2 L-mode shots. Similarly no significant CI emission was

observed for the sector 1 views using CI filters apart from at the injection
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4.3 Image processing

Figure 4.4: Contour plots of the carbon plumes from L-mode pulse 29125

imaged from sector 1 using a CII filter at 515nm. The images are each

separated by 13µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.3 Image processing

Figure 4.5: Contour plots of the carbon plumes from L-mode pulse 29125

imaged from sector 11 using a CII filter at 515nm. The images are each

separated by 13µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.3 Image processing

Figure 4.6: Contour plots of the carbon plumes from L-mode pulse 29126

imaged from sector 1 using a CII filter at 515nm. The images are each

separated by 13µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.

91



4.3 Image processing

Figure 4.7: Contour plots of the carbon plumes from L-mode pulse 29126

imaged from sector 11 using a CII filter at 515nm. The images are each

separated by 10µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.3 Image processing

Figure 4.8: Contour plots of the carbon plumes from H-mode pulse 29139

imaged from sector 1 using a CII filter at 515nm. The images are each

separated by 13µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.3 Image processing

Figure 4.9: Contour plots of the carbon plumes from H-mode pulse 29139

imaged from sector 11 using a CII filter at 515nm. The images are each

separated by 10µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.4 Emission parallel to the magnetic field

Figure 4.10: Contour plots of the carbon plumes from L-mode pulse 29128

imaged from sector 1 using a CI filter at 910nm. The images are each sep-

arated by 13µs. Magnetic field lines originating at the injection radius can

be seen projected onto the image.

location. This is likely due to the carbon quickly ionising once in contact

with the plasma.

4.4 Emission parallel to the magnetic field

A measure of the parallel transport of the injected carbon is obtained by

reading the emission from the images (see 4.3) along the path of the projected
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4.4 Emission parallel to the magnetic field

Figure 4.11: Contour plots of the carbon plumes from L-mode pulse 29128

imaged from sector 11 using a CIII filter at 465nm. The images are each

separated by 10µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.4 Emission parallel to the magnetic field

Figure 4.12: Contour plots of the carbon plumes from L-mode pulse 29129

imaged from sector 1 using a CI filter at 910nm. The images are each sep-

arated by 13µs. Magnetic field lines originating at the injection radius can

be seen projected onto the image.
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4.4 Emission parallel to the magnetic field

Figure 4.13: Contour plots of the carbon plumes from L-mode pulse 29129

imaged from sector 11 using a CIII filter at 465nm. The images are each

separated by 10µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.4 Emission parallel to the magnetic field

Figure 4.14: Contour plots of the carbon plumes from H-mode pulse 29142

imaged from sector 1 using a CI filter at 910nm. The images are each sep-

arated by 13µs. Magnetic field lines originating at the injection radius can

be seen projected onto the image.
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4.4 Emission parallel to the magnetic field

Figure 4.15: Contour plots of the carbon plumes from H-mode pulse 29142

imaged from sector 11 using a CIII filter at 465nm. The images are each

separated by 10µs. Magnetic field lines originating at the injection radius

can be seen projected onto the image.
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4.5 Repeat injection

field starting at the injection location. The images are first smoothed over 2

pixels using the IDL Gaussian smoothing algorithm. This reduces the noise

without significantly affecting the absolute measured emission. This line

integrated emission along the projected magnetic field can be seen in figures

4.16, 4.17 and 4.18. This is compared to results obtained from simulation in

section 5.4. The data from the H-mode shot 29139 shows a clear expansion

along the field line and an estimate of the impurity parallel velocity can be

made of 14± 3ms−1.

4.5 Repeat injection

In several cases a second discharge occurred after 60µs. Examples of this

can be seen in figure 4.19. In the frame immediately preceding the second

discharge the visible plumes were at the lower limit of sensitivity of the

CCDs, indicating that the following frame would not have provided further

significant information on transport. Due to this, and considering the added

complexity of modelling a second impurity injection while impurities were

still present in the plasma data from the injection due to the second discharge

will not be used for comparison with simulation. This second discharge did

not occur during the initial set of experiments and it is possible that a change

to the charge carrying cable in the vacuum system from coaxial to single core

increased the inductance of the system and caused a second delayed current

pulse. This change was made for reasons of mechanical reliability and could

potentially be reversed if suitable coaxial cable were used.
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4.5 Repeat injection

(a) Sector 1 (b) Sector 11

Figure 4.16: CII emission intensity along the field line from sectors 1 (a) and

11 (b) for shot 29125
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4.5 Repeat injection

(a) Sector 1 (b) Sector 11

Figure 4.17: CII emission intensity along the field line from sectors 1 (a) and

11 (b) for shot 29126
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4.5 Repeat injection

(a) Sector 1 (b) Sector 11

Figure 4.18: CII emission intensity along the field line from sectors 1 (a) and

11 (b) for shot 29139
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4.5 Repeat injection

(a) 29126

(b) 29139

Figure 4.19: Secondary injection. CII filtered images taken from shot 29126

(a) and shot 29139 (b) showing the initial injection in the first frame and a

secondary burst of carbon in frames 7 and 5 respectively.
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CHAPTER 5

DIVIMP Simulation

5.1 OSM-EIRENE-DIVIMP

The data obtained from experiment was compared with simulation using the

OSM-EIRENE-DIVIMP set of codes see 1.4.7. This package is currently

being used in ITER modelling, the results of which are used being used to

guide the ITER design. OSM (see 1.4.5) simulates the hydrogenic back-

ground plasma by solving a set of 1D fluid equations parallel to the magnetic

field, EIRENE provides the neutral dynamics and DIVIMP uses a Monte-

Carlo method to follow impurity particles on the plasma background.

5.1.1 OSM

As described in section 1.4.5 OSM performs interpretive modelling of the

plasma SOL, in that the goal is to provide as complete a description of
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5.1 OSM-EIRENE-DIVIMP

the SOL given the available experimental data. The code provides a num-

ber of different methods for creating the independent 1D plasma solutions

along each flux tube, all tailored towards certain plasma conditions. The

method used here is SOL option 28, also used in current ITER simulations.

This method is not currently included in the DIVIMP documentation[161]

although has previously been used to simulate DIII-D plasmas[162].

A reconstruction of the magnetic equilibrium from a code such as EFIT is

used to create a grid containing a series of tubes of constant flux, see figure

1.2. Each flux tube is then split into an upper and lower section by pre-

scribing a ’symmetry’ point approximately halfway between the upper and

lower targets. The temperature along each half tube is then prescribed by

interpolating from data at the targets to data at the symmetry point and

assuming Te = Ti. For this case a 7/2 power law was used, based on the

assumption that the parallel transport is conduction dominated. This tem-

perature profile is then used to solve the mass and momentum conservation

equations

d

ds
(nivi) = Sparticle + Aparticle (5.1)

d

ds
(Te + Ti +miniv

2
i ) = Smomentum + Amomentum (5.2)

where s is the distance along the flux tube and the final term in each case is

an anomalous source that effectively includes any physics not included in the

model used here, such as cross-field transport, particle drifts or turbulence.

The anomalous source is defined as a function of s by the user and the

coefficients calculated by the OSM solver, in this case it is set to the simplest

case of a constant along s. This approach allows each flux tube to be treated

independently, there is no perpendicular transport, either diffusive, advective
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5.1 OSM-EIRENE-DIVIMP

or turbulent, between two neighbouring tubes.

5.1.2 EIRENE

The EIRENE code is widely used in the fusion community to simulate the

behaviour and plasma interaction of neutral particles and radiation in toka-

maks. The plasma solution produced by OSM is dependent on the interaction

of the plasma with neutrals and conversely the neutral population is depen-

dent on the plasma solution. The neutral particles are not confined by the

magnetic fields present in the tokamak and therefore interact with all regions

of the SOL. This results in particle, energy and momentum sources over a

large extent of the plasma. EIRENE uses the plasma solution calculated by

OSM to calculate the neutral solution and returns this to OSM. This process

is then repeated until a steady state solution is reached, although in practice

this is often achieved after just a few iterations. Although EIRENE has 3D

capability only a 2D solution is required when used with OSM.

5.1.3 DIVIMP

Although DIVIMP is essentially a stand alone code the version used here

controls the running of OSM and EIRENE and the creation of the background

plasma solution. The process of obtaining simulations of impurity behaviour

begins with the simulation of the background plasma, which is usually first

calculated without impurities. This solution is then saved to file and used by

DIVIMP when simulating the impurity behaviour. Impurities are injected

at a location defined by the user, the impurities are then followed using a

Monte-Carlo method until a steady state is reached. It is possible to set a

maximum dwell time for the particles launched by DIVIMP so that after a

set time they are not followed and remain in the position they occupied after
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5.1 OSM-EIRENE-DIVIMP

the dwell time is reached. This allows a time dependent process, such as

the injection of impurities, to be simulated up to the time that the injection

ceases. DIVIMP uses the the ADAS atomic and molecular database [163] for

all atomic processes.

Parallel transport is modelled by calculating the forces on the impurity

particles from equation 1.11 as well as parallel diffusion. DIVIMP includes

several different options for applying these forces, the setup used in this case

is now described.

The first term in equation 1.11, the force due to the electric field does

not need elaboration. The stopping time (τs) in the friction term is given by

τs = miTb

√
Tb
mb

× 1.0(
6.8× 104

(
1.0 + mb

mi

)
NbZ2

bZ
2
i λ
) (5.3)

where the subscript b refers to values for the background plasma and λ is

the mean free path for the impurity ions. The electron and ion temperature

gradient force coefficients αe and βi are given by

αe = 0.71Z2
i , βi = −3

(
1− µ− 5Z2

i µ
√

2µ (1.1µ− 0.35)
)

(2.6− 2µ+ 5.4µ2)
(5.4)

where

µ =
mi

mi +mb

(5.5)

the calculation of collisional diffusive transport uses a parallel time con-

stant (τ‖) given by

τ‖ = mi

√
Tb
mb

× Ti(
6.8× 104

(
1.0 + mb

mi

)
NbZ2

bZ
2
i λ
) (5.6)

Perpendicular transport is included by setting a perpendicular diffusion

coefficient D⊥ to an empirical value, in this case the commonly adopted value
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of 1m2s−1 [164]. No terms for advective transport exist in DIVIMP. Particle

drifts that can result in cross field transport are also not present, as stated

in section 1.4.7.

5.2 Plasma solution

Obtaining a reliable plasma solution from OSM relies heavily on having de-

tailed diagnostic data for the plasma to be simulated. The solution is based

on 2 sets of observations, those from plasma diagnostics providing tempera-

ture, density and other kinetic information and observations that provide the

magnetic grid on which the simulation is run. As has been noted in section

1.5 the MAST tokamak has a comprehensive array of diagnostics that make

it very suitable for simulation using OSM. The plasma diagnostic data used

as input to these simulations is detailed in chapter 3. DIVIMP allows the

plasma solution to be stored so that ions can be injected into the simulation

without having to recalculate. For these cases a total of 4 OSM-EIRENE it-

erations were required to achieve a steady state, at which point no significant

change is seen with further iterations.

5.2.1 Simulation Equilibrium

The grids that define the geometry of the simulations were initially obtained

from eqdsk files produced by the EFIT code, the lower divertor sections of

these grids can be seen in figure 5.1.

A simple check on the validity of the calculated equilibrium can be made

by comparing the strike point location given by the reconstruction with ki-

netic data from the divertor Langmuir probes. Figures 3.7, 3.8 and 3.9 show

the EFIT calculated strike point position, divertor Langmuir probe density
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(a) 29125 (b) 29126

(c) 29139

Figure 5.1: Grids used for the impurity injection simulation. These are

produced using EFIT magnetic equilibrium reconstruction.
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data and injector Langmuir probe data for shots 29125, 29126 and 29139. It

is expected that the density maximum be close to the strike point location,

which is the case for the shots 29125 and 29126, however for shot 29125 this

data is contradicted by the injector mounted Langmuir probe, which sug-

gests that the the strike point may have already passed over the injector.

This is consistent with the imaging of injection for 29125, which suggests

that the injection took place inside the outer strikepoint. For shot 29139 the

Langmuir probe data suggests that the strike point location calculated by

EFIT is inboard of the actual location, the density peak is significantly in-

side the calculated strikepoint and there is no increase in saturation current

seen on the injector Langmuir probe at the time of the shot, which would

be expected as the strike point passes over the probe. In order to account

for the clear discrepancy in the strike point position identified by EFIT the

injection location used in the simulation was altered to account for this: this

is described in sections 5.3.1 and 5.5.2.

5.2.2 Background plasma simulation

The plasma solutions for the lower divertor used for the simulations of impu-

rity injection can be seen in figures 5.2, 5.3 and 5.4. As described in section

1.4.5 these simulations are base on the magnetic equilibrium reconstruction

and experimental data. The standard approach is to use measured data at

the targets and midplane. In this case this data is provided by divertor Lang-

muir probes (see section 3.2.4) and the MAST Thomson scattering system

(see section 3.2.4).
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Uncertainties in data location

As stated in the previous section there is significant uncertainty in the mag-

netic equilibrium used, which translates into an error in the radial location of

the target and midplane data used in the simulation. A sensitivity scan was

carried out to address this issue, background plasma simulations were carried

out while independently shifting the location of the midplane and target data

by 0.01 and 0.02 in normalised poloidal flux (ψn) in each direction, equivalent

to approximately 7mm and 14mm at the outer divertor target and 3mm and

6mm at the midplane. This results in 8 further plasma solutions with either

the midplane or target data shifted. Simulations of impurity injection were

then carried out using a dwell time of 50µs and the result compared for the

5 background plasmas. The results of this scan can be in figures 5.5 and 5.6.

Figure 5.2: Simulated deuterium density and temperature for shot 29125 at

250ms

A shift of ψn = 0.01 has only a small effect on the carbon II emission. The

effect on the carbon III emission is significant for changes in the target data
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Figure 5.3: Simulated deuterium density and temperature for shot 29126 at

240ms

Figure 5.4: Simulated deuterium density and temperature for shot 29139 at

320ms
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for the L-mode cases and the midplane data in the H-mode case. For the

L-mode cases this is likely due to the change in temperature caused by the

shift, resulting in less carbon reaching the second ionisation state. In the case

of the H-mode data this reflects the large gradient in midplane temperature

and density.

A shift of ψn = 0.02 has a relatively small effect on the L-mode shot

29125, probably because the injection point is well above the targets. For

L-mode shot 29126 and H-mode shot 29139 this level of shift has a dramatic

effect on the simulation result, in particular for midplane data.

The effect on the parallel density of shifting the input data can be seen in

figure 5.7. It can be seen that the density profile changes significantly with

shifts in the input data, and helps to explain the differences seen in emission

from simulation.

Similarity between the L-mode shots

Shots 29125 and 29126 are naturally very similar, the only systematic dif-

ference being the strike point position. This is born out by a comparison

of the parallel density for the tubes just outside the strikepoint, in this case

12 and 13, which can be seen in figure 5.8. The data for tube 13 can be

taken as identical as expected, there is however a difference in the gradient

for tube 12, which is closer to the strikepoint. This is due to differences in

the midplane data, and is small enough to be unlikely to have a significant

effect on the impurity simulations.

5.2.3 Flow comparisons

The coherence imaging data allowed direct comparison of the simulated back-

ground plasma to the data. Figure 5.9 shows the measured flow compared
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against the simulated flow along one of the simulation flux tubes. It can be

seen that the measured flow profiles are largely flat in the lower divertor and

are unlike the simulated profiles which show almost zero flow along most of

the flux tube and large increase in flow towards the divertor close to the outer

target. The measured flow velocities are also significantly different from sim-

ulation. It should be noted that the lack of carbon III emission close to the

targets increases the error on this measurement and in the case of shot 29139

the measured flow close to 0ms−1 near the targets is not reliable. This casts

some doubt on the validity of the OSM background plasma simulation and

further work is required to account for this difference.

5.3 Simulated impurity injection initial con-

ditions

There are several uncertainties associated with the injection conditions used

in the DIVIMP simulations. the principle of these are listed below.

• Initial radial position of ions relative to the outer strike point

• Initial Z position of ions

• Duration of injection

• Energy distribution of injected ions

• Number of injected ions

For each uncertainty an estimate was made from the available data. These

values were then used for the baseline simulations. Scans of these values were

then performed to identify the possible effect of the uncertainties.
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5.3 Simulated impurity injection initial conditions

5.3.1 Initial radial position of injected impurity

The absolute radial position of the injected ions is known due to the fixed

location of the DSF at 0.985m. There is some uncertainty in this position

due to the possibility of the spark forming at a particular location on the

ring shaped gap of the injector head (see 2.4.1) instead of uniformly around

the ring. However, as the inner diameter of the outer electrode is only 2mm

any error introduced by this possibility is small. The radial position of the

injection relative to the outer strike point is harder to identify, largely due to

uncertainties in the magnetic reconstruction. Assuming the true location of

the injector then this distance is set by the simulation grid that is based on the

magnetic equilibrium. Unfortunately there is a large discrepancy between the

EFIT strike point data and that inferred from Langmuir probe measurements

(see section 3.2.3). This discrepancy can be somewhat accounted for by

moving the injection location radially in the simulation. Simulations with

injection performed at different radial locations are discussed in section 5.5.2

5.3.2 Initial Z position

Identifying the vertical or Z location of the injected ions relies on the in-

terpretation of the filtered images (see section 4.3. This uncertainty arises

as the carbon injector launches carbon neutrals and ions vertically into the

tokamak. This can result in a vertical displacement of the carbon before

interaction with the plasma dominates their motion. This is made more dif-

ficult by the 2D projection of the 3D plume and by the mix of ions, atoms

and fine dust particles launched by the injector. Ablated ions will be con-

fined by the toroidal magnetic field so one can be confident that the injection

location for ions is close to the centre of the DSF. The images and field line
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projections for shots 29126 and 29139 support this with the most significant

emission in the first frame after injection coming from close to the DSF loca-

tion, although in shot 29126 there is significant spread in the image. Neutral

carbon particles can however travel away from the injection location until

they are ionised by the background plasma. The image from 29125 suggests

that this does occur as the emission peak appears some centimetres above the

DSF location. For the purposes of simulation the baseline injection location

for shots 29126 and 29139 was taken to be 1mm above the DSF while for

shot 29125 it was taken to be 4.5cm above the DSF.

5.3.3 Injection duration

Measurements of the discharge current and the peak in visible emission give

injection durations of approximately 40µs for the L-mode cases and 60µs for

the H-mode cases, see section 3.2.2. Although there is significant uncertainty

in these values it is reasonable to assume that the injection does in fact

take place over the duration of the imaging for purposes of comparison with

simulation.

5.3.4 Initial energy distribution

DIVIMP assigns the same energy to all injected ions, there is no possibility

of assigning an energy distribution function in a single simulation, although

this can be approximated by performing multiple simulations with different

energies and total number of injected ions and then combining the results,

this was not done here. No measurements of ion energy were made during

the development of the injector, and even if this was the case the markedly

different conditions present on MAST would cast doubt on the applicability
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of the measurements. It is therefore necessary to make an estimate of the

initial ion energy based on the available information.

The transit time of a carbon ion between the electrodes is of the order

of nanoseconds, significantly longer than the microsecond timescale of the

discharge itself. This means that individual carbon ions will gain a large

proportion of the energy available from the electric field, potentially hun-

dreds of electron-volts. However these ions will then impact on the positive

electrode, knocking further atoms and ions from the electrodes, losing energy

to the wall and ablated products in the process. Further ionisation of the ion

is also likely to occur at these energies, further reducing the kinetic energy

of the ion. These processes are extremely complex and a detailed analysis

is beyond the scope of this thesis. However this process is very similar to

the sputtering of atoms from the first wall of fusion devices. Much research

has gone into this process and a brief discussion is available from Stangeby

[5]. This works approximates the energy distribution of physically sputtered

neutrals as

dY

dEZ
=

EZ
(EZ + EB)3

(5.7)

where Y is the sputtering yield, EZ the energy of the emitted neutral

and EB the binding energy of carbon. This distribution has a maximum at

EZ = 1/2EB, for carbon EB = 7.4eV . Although this treatment applies to

neutrals it is not unreasonable to expect carbon ions to have similar energies

in the 1eV to 10eV range.

The operation of the carbon injector can also be compared to the recent

developments in vacuum arc plasmas, on which a significant body of work

exists [165–167]. As part of this work measurements have been made of the

ion energy distribution produced by these devices. Byon 2003 [168] produced
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energy distribution functions for carbon plasmas, the result being a peaked

distribution with a high energy tail centred around 50eV - although higher

than values estimated from sputtering arguments, this is consistent with ion

energies in the 10eV range.

Although there is still large uncertainty in the initial energy of the injected

ions these arguments suggest 10eV as an appropriate initial condition and

this is used in the basic comparison with experiment.

Effect of injected energy

In order to understand the effect of ion energy on transport a scan in injected

energy was performed for the three shots of interest. Ions were injected

into the plasma with energies of 0.1eV, 1eV, 10eV and 100eV. The rate of

transport parallel to the field for the carbon II and carbon III states was

then compared for each energy. The results can be seen in figures 5.10, 5.11

and 5.12. The solid, dashed and dotted lines represent injection at 1eV,

0.1eV and 10eV while the triangles represent injection at 100eV. It can be

seen that the initial energy has a very significant impact on the impurity

transport. This is not surprising as the background plasma temperature is

approximately 10eV, once the initial energy is comparable to this value then

the pressure term in equation 1.11 becomes increasingly important.

5.3.5 Number of injected ions

The Monte Carlo method used by DIVIMP does not affect the background

plasma solution, the number of injected ions is therefore only relevant when

considering the statistical fluctuations in the solution. A higher number

of injected ions gives a result with lower statistical error at the expense of

computational resources. For the simulations described here 10000 particles
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were injected, giving run times of the order of minutes.

5.4 Parallel transport simulations for com-

parison with experiment

In order to compare simulation with experiment DIVIMP was set up to

output the carbon II and carbon III emission along the flux tubes near to

the injection location. For the three shots 29125, 29126 and 29139, figures

5.13, 5.15 and 5.15 show the simulated carbon II and carbon III emission

along 3 flux tubes, 1 inside the outer strike point and 2 outside. 6 successive

times separated by 13.3µs are shown in each frame, the radial location of

the centre of the flux tube at the divertor target is shown above each frame.

The injection location is at the DSF location of 0.985m and the initial ion

energy is 10eV . The height of injection for shot 29125 is 4.5cm above the

target and for 29126 and 29139 it is 1mm above the target.

5.5 Comparison between experiment and sim-

ulation

Presented here are comparisons between the simulated impurity emission

along a field line corresponding to the experimentally measured emission

taken from the projection of the field lines onto the images taken by the

fast filtered cameras. An immediately obvious problem is the 3 dimensional

nature of the emission compared to the 2 dimensional images, which takes a

line of sight integrated measurement at each pixel. This problem is somewhat

alleviated by the preferential transport along the field lines. For the H-mode
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shot 29139 the emission can clearly be seen to follow the field line with little

cross-field transport occurring over the period of the images. This is not

the case for the 2 L-mode shots 29125 and 29126 where clear cross field

transport is observed. However strong parallel transport is still present with

the plume extending significantly along the field lines, particularly for shot

29126. The diffuse nature of the emission in shot 29125 is likely due to the

injection location, which appears to have occurred radially inside the outer

strike point. The diffuse nature may then be partly due to neutral particles

being injected upwards in an expanding cloud and ionising once they reach

the hotter denser region close to the separatrix, in a manner more akin to

gas injection.

Figures 5.16, 5.17 and 5.18 show the experimentally measured carbon II

emission plotted against the simulated carbon II emission for the flux tube

with the highest emission in each case for the 2 L-mode and 1 H-mode shot.

The initial conditions are the same as the plots presented in section 5.4 and

an arbitrary normalisation factor has been applied to the simulated emission

of 16 in the case of comparison with sector 1 data and 128 in the case of

comparison with sector 11 data. No comparison is made with carbon III

data due to the lack of observed emission.

5.5.1 Lack of observed CIII emission

As has been noted in section 4.3.2 very little or no extended emission was seen

when using carbon III filters. Looking at the ratio of carbon II to carbon III

emission from simulation one can see that the carbon III emission is at least

a factor 10 below the carbon II emission. The maximum observed carbon

III emission is approximately 5Wsr−1m−2 from sector 11 shot 29142, while

the maximum observed carbon II emission is approximately 10Wsr−1m−2.
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However this is found at the injection location and the large peak in emission

seen in experiment is not seen in simulation, suggesting that this level of

emission is at least partly due to the arc discharge itself. Looking at the

carbon II images (figure 4.8) one can see that the intensity in the plume away

from the injection location is typically 0.5Wsr−1m−2, assuming a ratio of

10:1 between the carbon II and carbon III emission the carbon II emission

would be of the order 5× 10−2Wsr−1m−2, only just above the noise level of

3× 10−2Wsr−1m−2. The most likely reason for a lack of observed emission

is therefore a lack of sensitivity of the filtered cameras.

5.5.2 Effect of radial location on emission

In order to account for the errors in strike point location calculated by EFIT

runs were performed for shots 29125 and 29139 with the injection location

moved by 1cm and 2cm. This changes the tube within which the highest

emission occurs and so changes the tube used for comparison. For shot 29125

the adjustment was made inwards towards the high field side, increasing the

distance of the injection inside the outer strike point, this can be seen in

figure 5.19. For shot 29139 the calculated strike point was clearly outside

the true location, 1cm and 2cm adjustments were therefore made towards

the low field side and can be seen in figure 5.20. Only plots for sector 1 are

shown.

5.5.3 Relative contribution of the transport mecha-

nisms

As described in sections 1.2.3 and 5.1.3 there are several mechanisms re-

sponsible for the transport of impurities, either corresponding to a term in
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equation 1.11 or added to account for unknown physics as in the case of the

cross-field diffusion coefficient. To better understand the importance of each

mechanism in these simulations a series of simulations were carried out with

the relevant term suppressed. The simulations were run with a dwell time of

50µs and the results can be seen in figure 5.21.

In each case the left panel shows the suppression of forces due to the

temperature gradient, friction and electric field, it can be seen that for 29125

these do not have a significant effect on the result. For 29126 the tempera-

ture gradient has little effect although the forces due to the electric field and

friction do have a small but noticeable effect, this is likely due to the high

flow and electric fields close to the target. For the H-mode 29139 only the

frictional force has a significant effect. The middle panel shows simulations

run without collisions and with the cross-field diffusion set to 0. Switching

off collisions, which has the effect of suppressing diffusion, has the effect of

increasing the parallel transport. Switching off the cross-field diffusion in-

creases the emission for this tube, this is expected as more particles remain

in the tube into which the injection occurred. The right panel shows impuri-

ties injected with 0 energy, this appears to be the most significant factor in

determining transport, and also explains why turning off collisions increases

the parallel transport by such an extent.

5.6 Role of drift terms in simulation results

It has previously been stated that neither DIVIMP or OSM simulations

include drift terms arising from electric field and magnetic field gradients.

Recent research has focused on the impact of particle drifts on impurity

transport[133] and divertor plasma conditions[96, 112, 169] and has shown
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these terms to be important in accurately representing carbon deposition

and target power loads. How important these terms are with regards to the

parallel impurity transport, which governs the influx of impurities sputtered

from the target into the bulk plasma is less clear.

5.6.1 Effect of drift terms on background plasma solu-

tion

Particle drifts can have a variety of effects on the background plasma con-

ditions, which will then affect the transport of impurities. It has been

shown[112, 170] that E × B and diamagnetic drifts cause a broadening of

the outer target radial profile and a reduction in peak density and power

reaching the target. However this effect is implicitly included in the OSM

modelling approach through the anomalous source terms and the prescrip-

tion of target profiles from experimental data. Effects of drifts on the plasma

profiles along B are however not included using this method. In particular

the parallel flow appears to be significantly affected by drifts [112, 171], with

simulations on JT-60[169] showing mid-plane flow velocities increasing from

2.5kms−1 to 8.3kms−1 when drift velocities are included. This is strongly

supported by data from the coherence imaging diagnostic used in these exper-

iments (section 5.2.3), which shows a significantly higher flow velocity than

seen from simulation along most of the flux tube. The effect of increased

flow is to increase the force on the impurity ions due to friction and for the

2 cases with injection close to the target, L-mode shot 29126 and H-mode

shot 29139, this term is seen to be significant (section 5.5.3). The simulated

flow close to the targets is actually larger than the measured flow, so that the

significance of the friction term may be doubted, while further away from the

targets as in shot 29125, where the frictional force appears less significant,
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the opposite is true. It can therefore be inferred that the simulated flow has

a significant impact on the validity of the impurity transport simulations.

5.6.2 Direct impact of drift terms on plume evolution

The effect of E ×B drifts on injected impurity plumes has previously been

observed by imaging of the plume distortion[51] and also by measuring the

location of deposited carbon-13[133] from post-mortem analysis of divertor

tiles. For standard magnetic field direction (∇B drift towards the lower diver-

tor) radial electric fields in the divertor SOL caused by radial temperature

gradients result in a poloidal drift towards the outer target, while electric

fields parallel to the magnetic field caused by parallel temperature gradients

cause an inward radial drift towards the private flux region. Electric fields

in the magnetic presheath to the sheath can also cause radial drifts, however

identification of this effect in the plumes studied here is not possible as it

occurs within approximately 1mm of the targets and can only be inferred

using post-mortem analysis techniques and detailed modelling[133].

The extremely diffuse nature of the plume in shot 29125 means that any

distortion is obscured, however for shots 29126 and 29139 the plume closely

follows the field lines towards the X-point. The orientation of the sector

1 camera means that the radial and poloidal drifts work in approximately

opposite directions in the image plane and partially cancel out the observed

distortion. The sector 11 camera suffers less from this problem as the radial

drifts are largely normal to the image plane, while the poloidal drifts are

largely vertical, the approximate directions are seen in figure 5.22. Compar-

ing figure 5.22 a and b one can see an apparent distortion in the plume in

the poloidal direction towards the targets that is more pronounced in the

sector 11 image. This could be interpreted as the effect of a poloidal drift,
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however errors in the magnetic equilibrium reconstruction and magnetic field

projection due to the camera registration could cause a similar effect.
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Figure 5.5: Sensitivity scan using background plasma solutions with the

target or midplane data shifted by ψn ± 0.01. Each plot shows simulated

carbon II and carbon III emission parallel to the magnetic field from the

injection location. s is the parallel distance along the flux tube.
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Figure 5.6: Sensitivity scan using background plasma solutions with the

target or midplane data shifted by ψn ± 0.02. Each plot shows simulated

carbon II and carbon III emission parallel to the magnetic field from the

injection location. s is the parallel distance along the flux tube.
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Figure 5.7: Density along the magnetic field for the simulation tube where

the injection takes place.
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Figure 5.8: Density along the magnetic field for simulation tubes just outside

the strike points for shots 29125 and 29126. The data for tube 13 can be

taken as identical as expected, there is however a difference in the gradient

for tube 12, which is closer to the strikepoint. This is due to differences in

the midplane data, and is small enough to be unlikely to have a significant

effect on the impurity simulations.
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Figure 5.9: Comparison of measured and simulated parallel flow using the

coherence imaging diagnostic and carbon III emission lines, see section 1.3.1.
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Figure 5.10: Comparison of transport parallel to the magnetic field for CII

and CIII ions injected at 0.1eV, 1eV , 10eV and 100eV at 10µs, 20µs, 30µs

and 40µs after injection for shot 29125. s is the distance along the magnetic

field from the lower target.
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Figure 5.11: Comparison of transport parallel to the magnetic field for CII

and CIII ions injected at 0.1eV, 1eV , 10eV and 100eV at 10µs, 20µs, 30µs

and 40µs after injection for shot 29126. s is the distance along the magnetic

field from the lower target.
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Figure 5.12: Comparison of transport parallel to the magnetic field for CII

and CIII ions injected at 0.1eV, 1eV , 10eV and 100eV at 10µs, 20µs, 30µs

and 40µs after injection for shot 29139. s is the distance along the magnetic

field from the lower target.
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Figure 5.13: Comparison of transport parallel to the magnetic field for CII

(a) and CIII (b) ions injected into shot 29125. Each frame shows emission

along a different flux tube starting at radial locations 0.986m, 0.995m and

1.016m. s is the distance along the magnetic field from the lower target.

136



5.6 Role of drift terms in simulation results

0.0 0.1 0.2 0.3 0.4 0.5 0.6
s (m)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Em
is

si
on

CII Tube 59 0.975m
13µs
27µs
40µs
53µs
67µs

0.0 0.1 0.2 0.3 0.4 0.5 0.6
s (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
Em

is
si

on
CII Tube 12 0.982m

13µs
27µs
40µs
53µs
67µs

0.0 0.1 0.2 0.3 0.4 0.5 0.6
s (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Em
is

si
on

CII Tube 13 0.990m
13µs
27µs
40µs
53µs
67µs

(a) CII emission

0.0 0.1 0.2 0.3 0.4 0.5 0.6
s (m)

0.00000

0.00005

0.00010

0.00015

0.00020

Em
is

si
on

CIII Tube 59 0.975m
13µs
27µs
40µs
53µs
67µs

0.0 0.1 0.2 0.3 0.4 0.5 0.6
s (m)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Em
is

si
on

CIII Tube 12 0.982m
13µs
27µs
40µs
53µs
67µs

0.0 0.1 0.2 0.3 0.4 0.5 0.6
s (m)

0.0000

0.0005

0.0010

0.0015

0.0020

Em
is

si
on

CIII Tube 13 0.990m
13µs
27µs
40µs
53µs
67µs

(b) CIII emission

Figure 5.14: Comparison of transport parallel to the magnetic field for CII

(a) and CIII (b) ions injected into shot 29126. Each frame shows emission

along a different flux tube starting at radial locations 0.975m, 0.982m and

0.990m. s is the distance along the magnetic field from the lower target.
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Figure 5.15: Comparison of transport parallel to the magnetic field for CII

(a) and CIII (b) ions injected into shot 29139. Each frame shows emission

along a different flux tube starting at radial locations 0.983m, 0.993m and

1.00m. s is the distance along the magnetic field from the lower target.

138



5.6 Role of drift terms in simulation results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
s (m)

0.00

0.05

0.10

0.15

0.20

0.25

Em
is

si
on

 (a
rb

.)
CII 13µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
s (m)

0.00

0.05

0.10

0.15

0.20

0.25

Em
is

si
on

 (a
rb

.)

CII 27µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
s (m)

0.00

0.05

0.10

0.15

0.20

0.25

Em
is

si
on

 (a
rb

.)

CII 40µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
s (m)

0.00

0.05

0.10

0.15

0.20

0.25

Em
is

si
on

 (a
rb

.)

CII 53µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
s (m)

0.00

0.05

0.10

0.15

0.20

0.25

Em
is

si
on

 (a
rb

.)
CII 67µs

Simulation
Experiment

(a) Sector 1 emission

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s (m)

0.0

0.2

0.4

0.6

0.8

1.0

Em
is

si
on

 (a
rb

.)

CII 10µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s (m)

0.0

0.2

0.4

0.6

0.8

1.0

Em
is

si
on

 (a
rb

.)

CII 20µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s (m)

0.0

0.2

0.4

0.6

0.8

1.0

Em
is

si
on

 (a
rb

.)

CII 30µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s (m)

0.0

0.2

0.4

0.6

0.8

1.0

Em
is

si
on

 (a
rb

.)

CII 40µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s (m)

0.0

0.2

0.4

0.6

0.8

1.0

Em
is

si
on

 (a
rb

.)

CII 50µs

Simulation
Experiment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s (m)

0.0

0.2

0.4

0.6

0.8

1.0

Em
is

si
on

 (a
rb

.)

CII 60µs

Simulation
Experiment

(b) Sector 11 emission

Figure 5.16: Comparison with experiment of transport parallel to the mag-

netic field for CII ions for L-mode shot 29125. s is the distance along the

magnetic field from the lower target.139
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Figure 5.17: Comparison with experiment of transport parallel to the mag-

netic field for CII ions for L-mode shot 29126. s is the distance along the

magnetic field from the lower target.
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Figure 5.18: Comparison with experiment of transport parallel to the mag-

netic field for CII ions for H-mode shot 29139. s is the distance along the

magnetic field from the lower target.
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Figure 5.19: Comparison with experiment of transport parallel to the mag-

netic field for CII ions for L-mode shot 29125. s is the distance along the

magnetic field from the lower target.
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Figure 5.20: Comparison with experiment of transport parallel to the mag-

netic field for CII ions for H-mode shot 29139 with (a) 1cm and and (b) 2cm

shift applied to the injection location. s is the distance along the magnetic

field from the lower target.
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Figure 5.21: Simulations with terms affecting impurity transport suppressed

for shots 29125, 29126 ad 29139. The legend indicates the force term that has

been suppressed. In each case the left panel shows the suppression of forces

due to the temperature gradient, friction and electric field, these do not have

a significant effect on the result. The middle panel shows simulations run

without collisions and with the cross-field diffusion set to 0m2s−1. The right

panel shows impurities injected with energy of 0eV , this appears to be the

most significant factor in determining transport. s is the distance along the

magnetic field from the lower target.
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(a) Sector 1

(b) Sector 11

Figure 5.22: Approximate direction of the radial and poloidal drifts in the

image plane for for sectors 1(a) and 11(b) for H-mode shot 29139 40µs after

injection. The plume appears to drift poloidally away from the magnetic field

with the effect being more pronounced in the sector 11 image. Care must be

taken in the interpretation of this due to errors in the magnetic equilibrium

and magnetic field projection.
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CHAPTER 6

Conclusions and further work

6.1 Conclusions

6.1.1 Injection system

It has been demonstrated that the carbon injector has successfully injected

carbon atoms and ions into the MAST plasma. Diagnostic measurements

suggest that the injection does not significantly perturb the plasma and yet

is visible to cameras operating at frame rates up to 100kHz. The capaci-

tor discharge did not affect other systems present on the machine, including

diagnostic and control systems. The simplicity of the design allows the equip-

ment to be installed within a day, although testing of the associated systems

is also required. The light weight of the injector head and limited number of

wired connections means that this device is suitable for installation in vari-

ous locations on the plasma vessel including the possibility of mounting on
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reciprocating probes to allow injection into the SOL mid-plane. The financial

cost of the system is also low when compared with other injection systems

such as laser blow off.

The initialisation of the injection can be specified to within 1µs although

there is a degree of variability of the quantity of injected carbon over the

following 50µs to 100µs. There is also significant uncertainty in the number

of atoms and ions injected during the discharge. The ability to alter the

discharge voltage allows injection into different plasma conditions while still

keeping perturbation low. The final version of the system was shown to

be extremely reliable and discharged with a success rate of 100% during the

final set of experiments. The uncertainty in the energy of the injected carbon

caused significant difficulties in comparison with simulation and would need

to be addressed on future systems. The small quantity of carbon injected

keeps the perturbation of the background plasma low so that modelling need

not address the cooling associated with gas injection systems[172].

6.1.2 Modelling

The OSM approach is well suited for producing background plasma solu-

tions for DIVIMP simulations. The use of experimental data to constrain

the solution gives confidence in its accuracy close to the targets and avoids

some of the the problems with target profiles associated with full 2D plasma

codes[112, 170]. Conversely, the limited experimental constraints used in this

study limit the validity of the solution away from the targets, this is high-

lighted by the disagreement between the simulated flow and that measured

by the coherence imaging diagnostic for all shots studied. Using this data

as a constraint is a natural next step in improving the background plasma

solution. The simulation of flow is an issue for full 2D codes [169, 171] as
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well as OSM and highlights the value of new diagnostic techniques such as

this. The lack of drift terms in OSM is likely to play a role in the incorrect

simulation of parallel flow, although development of the code is required to

confirm this.

The errors introduced by the EFIT magnetic equilibrium reconstruction

are significant and this work highlights the importance of accurate equilib-

rium reconstruction as conditions in the edge plasma varying significantly

with location, as shown by the different behaviour of the carbon plume be-

tween shots 29125 and 29126, where the difference between the injection

locations relative to the outer strike point is approximately 1cm. This effect

is likely to be more pronounced in H-mode shots, which typically have a much

reduced scrape off layer width, however only one H-mode shot was imaged

while using carbon II filters. Despite this, sensitivity scans show that the

solution is robust to errors up to approximately 1cm, however beyond this

the solutions are altered significantly. The solution can be further improved

using other experimental constraints such as spectroscopic imaging of Dα

and Dγ emission[162].

The DIVIMP simulations of carbon transport based on the OSM plasma

solutions show reasonable qualitative agreement with experimental data, in

particular showing the diffuse nature of the parallel transport in L-mode

shot 29125 and the low level of parallel transport seen in the H-mode shot

29139. The results are not sensitive to small changes in the background

plasma resulting from shifting the target and target data, although shifts of

approximately 1.5cm do have a significant impact on the simulated carbon

distribution. The effect of plasma flow on carbon transport through friction

is small but significant, increasing the importance of accurately modelling

flow in the background plasma.
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The simulation scan in the energy of injected ions and the study of the

principle mechanisms affecting the simulated plume evolution show that en-

ergy of the injected carbon is likely to have a significant impact on the impu-

rity transport, so that although the injection does not appear to significantly

perturb the plasma the dynamics of the injected carbon are dominated by

the injection energy and not by interactions with the background plasma. A

scan in injection energy where injections are performed into the same plasma

conditions with different charging voltages would help in understanding this

issue, as would further study of the injection itself in a laboratory environ-

ment.

No attempt was made to compare the cross-field transport with experi-

ment. Cross-field transport was included by setting the cross-field diffusion

to an empirical value of 1m2s−1. Disabling this transport had a significant

effect on the parallel transport but did not qualitatively alter the result.

Ideally the cross field transport would be set using cross-field transport coef-

ficients obtained from the OSM solution, however the absence of drift terms

in OSM reduces the reliability of these coefficients.

No drift terms are included in the DIVIMP simulations, however the

effect of these terms on the parallel transport is likely to be dominated by

the energy of the injected particles. The effects of cross-field drifts seen in

previous work [51, 133] can potentially be seen, particularly in the case of

H-mode shot 29139 where a deviation from the magnetic field can be seen.

However uncertainties in both the magnetic equilibrium reconstruction and

the registration of the camera images mean that no firm conclusions can be

made from this.

The dominance of the energy of injected particles on the carbon transport

complicates the desire to understand the transport of impurities arising from
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sputtering of the first wall and from impurity seeding, however the effect

of particle drifts can potentially be seen. The ability to vary the injected

energy also provide a way of studying the transport of high energy sputtered

products that may arise in the high power conditions expected in future

devices such as ITER.

6.2 Further work

The first and most obvious improvement to this work is the use of a more

tightly constrained EFIT equilibrium reconstruction. Although constrained

EFIT cases were run that improved the strike point location, problems with

generating grids suitable for use with DIVIMP-OSM-EIRENE meant that

this data was not used in the simulations presented here. Using this recon-

struction would reduce the uncertainties in the background plasma solution

as well as more tightly constraining the injection location relative to the

strike points. With the present data it appears that the impurities may not

simply follow the field lines and actually deviate from the field, an effect that

may well be caused by particle drifts. However as the magnetic data is error

prone this may well be due to a combination of errors in the field used for

the projection onto the image and in the registration of the cameras used in

the projections.

Using an improved equilibrium may allow this effect to be studied with

the potential to include E×B drifts present in the SOL. Including the mea-

sured flow as a constraint in the background plasma solution would further

reduce uncertainties associated with the background plasma and allow a more

detailed study of the effect of each of the terms governing impurity transport.

To really gain the most from this data 3D image reconstruction could be
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attempted for the shots where carbon II filters were used on both cameras.

Although full Abel inversion of the emission profile is likely to be problematic

due to there only being 2 viewing angles a reconstruction of the emission

surface should be possible. If this were to be done then comparisons could

then be made with modelling in 3D and again it may be possible to infer

information on drifts present in the SOL. Such 3D reconstructions could also

help understand the cross field turbulent transport that is the subject of

many current modelling efforts. Further to this the inclusion of drift effects

in DIVIMP would allow their impact on the injected plume to be better

studied.

The possibility to inject impurities into other regions of the plasma could

provide further data on edge impurity transport. The method also has the

potential to inject other conducting materials such as tungsten: this could

provide useful data for the latest devices that use tungsten as a plasma facing

material. However before this type of work is considered the difficulties

associated with this technique must be addressed, in particular the apparent

dominance of the energy of injected carbon on transport.
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Manufacturing drawings of the injector head
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APPENDIX B

Electrical schematics of the MAST installation
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APPENDIX C

Commissioning and initial experiments

C.1 Commissioning and in-situ testing

The injector head was first installed on MAST on Friday 23rd September

2011. Testing of the power supply was started on Wednesday 28th (shot

26851) using a 300Ω dummy load without any connection to the injector

head. The testing was performed during a session dedicated to other work

so the spark trigger was set to 400ms, significantly after the main time of

interest for the primary experiment. During this testing the capacitor bank

would discharge roughly 100ms into the MAST pulse, before this time the

capacitors would trigger normally, after this time no triggering was possible.

No signal was observed from the current monitor during or after the voltage

drop. Testing continued on Friday 30th September and the cause of the

discharge was identified as the IPS box lid interlock. The magnetic relay
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C.2 First experimental sessions - Oct 2011

used in the interlock was deactivating and returning to a closed state due to

the magnetic field underneath the MAST vessel. This caused the capacitors

to discharge and prevented further charging. The MAST safety officer agreed

that as long as the box was in-situ it would be safe to disable this interlock,

provided that it was re-enabled once the IPS box was removed. Disabling

the interlock solved this problem and the power supply was shown to work

as expected.

The injector head was connected to the power supplies on 4th October.

Although the power supplies were now known to be working and the optical

trigger was being received no discharge was observed. This problem was

traced to an incorrectly assembled cable and fixed the same day. The first

successful firing of the injector was during pulse 26998 on Wednesday 5th

October.

Before injection into plasma a series of discharges at increasing voltage

up to the maximum of 2.5kV were attempted into vacuum conditions. Only

very small current readings were seen by the current probe and no effect was

seen on any of the MAST systems. This was not unexpected as the plasma

was expected to play a significant role in the breakdown. The fact that no

breakdown occurred also made it unlikely that any external systems could

have been affected. It was decided that test pulses into plasma shots would

be required to properly test the system.

C.2 First experimental sessions - Oct 2011

Ohmic L-mode plasmas were chosen for the commissioning and initial exper-

imental sessions. The uncertainty associated with ELMs occurring during

H-mode plasma increases the complexity of both data processing and mod-
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elling. It was also uncertain how the injector systems would react to high

power plasmas as the injector power supplies are directly coupled to the

plasma through the injector head. A relatively benign plasma would there-

fore be safer. Not relying on neutral beams (NBI) also removes a potential

problem when running experiments.

The fixed location of the DSF and the sweeping of the MAST strike points

mean that only a limited number of MAST plasma configurations are suitable

for study with diagnostics on the DSF. In the large majority of pulses the

strike point crosses the DSF before the current flat top is reached. Previous

studies using a retarding field energy analyser fitted to the DSF[151] have

developed several shots that cross the DSF at a suitable time during the

shot. One of these shots, 26776, was chosen as a likely candidate for use in

the carbon injection experiments. This is a low current (400kA) Ohmically

heated shot. The MAST standard shot was also used for these experiments

due to its simplicity and reliability.

C.2.1 Wednesday 5th October 2011

For the first full session on Wednesday 5th October it was decided to use the

MAST standard shot as this was believed to be the most fail-safe approach.

Unfortunately an undocumented change to the gas control system caused

problems running the standard shot and the session had to be abandoned

without any useful data being recorded.

C.2.2 Friday 7th October 2011

During the following session on Friday 7th October the injector failed to

discharge. This was due to a failure of the IGBT trigger in the power supplies,

202



C.2 First experimental sessions - Oct 2011

see section 2.4.3. Area entry was required to remove the power supplies and

the IGBT was then replaced before the supplies were reinstalled.

C.2.3 Friday 14th October 2011

The first camera data was taken on Friday 14th June. The majority of these

shots used MAST pulse 26776 as a reference. The spark location was varied

from ≈ 4cm inboard of the outer strike point to ≈ 3cm outboard of the outer

strike point. Both cameras were operated at a speed of 75kHz. A total of 17

successful shots were run in this session with shot numbers 27074 to 27090.

C.2.4 Monday 17th October 2011

A follow up session was then conducted using the MAST standard shot which

operates at a higher current (770kA) than the previous shots. Although

there was excessive noise on some of these shots the image data taken was

still potentially useful. A total of 10 successful shots were run in this session

with shot numbers 27095 to 27103.

203


	Table of Contents
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	Abstract
	Introduction
	Edge plasma transport
	Parallel and perpendicular transport
	Radial asymmetry
	Particle drifts
	Flow reversal
	Turbulence

	Impurities
	The effect of impurities on the plasma
	Impurity generation
	Impurity transport

	Plasma boundary diagnostics and experimental techniques
	Principle plasma boundary diagnostics
	Impurity injection experiments

	Modelling Impurities in the Scrape-Off Layer
	Approaches to Impurity Modelling
	The Two-Point Model
	1D fluid modelling along B
	Modelling the SOL in 2 dimensions
	The Onion Skin Method
	Further SOL modelling
	Kinetic impurity models

	The MAST tokamak

	Carbon injector design and testing
	Design motivation
	The injector design
	The spark head

	Injector development
	Test conditions
	Observed pressure increase
	Ablated mass measurements
	Imaging

	Final design
	The injector head
	Power supplies and triggering
	Modification after initial commissioning

	Installation on MAST

	Experimental method and data
	Experimental approach
	First use
	Diagnostics

	Experimental data
	Plasma configuration
	Injection duration
	Injection location
	Electron temperature and density data
	Flow data


	Image processing and analysis
	Acquired CCD data
	Camera Calibration

	Magnetic field projection
	Camera registration and field line projection

	Image processing
	CII emission
	CI and CIII emission

	Emission parallel to the magnetic field
	Repeat injection

	DIVIMP Simulation
	OSM-EIRENE-DIVIMP
	OSM
	EIRENE
	DIVIMP

	Plasma solution
	Simulation Equilibrium
	Background plasma simulation
	Flow comparisons

	Simulated impurity injection initial conditions
	Initial radial position of injected impurity
	Initial Z position
	Injection duration
	Initial energy distribution
	Number of injected ions

	Parallel transport simulations for comparison with experiment
	Comparison between experiment and simulation
	Lack of observed CIII emission
	Effect of radial location on emission
	Relative contribution of the transport mechanisms

	Role of drift terms in simulation results
	Effect of drift terms on background plasma solution
	Direct impact of drift terms on plume evolution


	Conclusions and further work
	Conclusions
	Injection system
	Modelling

	Further work

	Bibliography
	Appendices
	Manufacturing drawings of the injector head
	Electrical schematics of the MAST installation
	Commissioning and initial experiments
	Commissioning and in-situ testing
	First experimental sessions - Oct 2011
	Wednesday 5th October 2011
	Friday 7th October 2011
	Friday 14th October 2011
	Monday 17th October 2011



