36,072 research outputs found

    Charged-Particle Decay at Finite Temperature

    Get PDF
    Radiative corrections to the decay rate of charged fermions caused by the presence of a thermal bath of photons are calculated in the limit when temperatures are below the masses of all charged particles involved. The cancellation of finite-temperature infrared divergences in the decay rate is described in detail. Temperature-dependent radiative corrections to a two-body decay of a hypothetical charged fermion and to electroweak decays of a muon are given. We touch upon possible implications of these results for charged particles in the early Universe.Comment: 18 pages, 6 figures. v2: typos corrected, bibliography revised, content matches published versio

    Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules

    Get PDF
    Present photoionization experiments cannot measure molecular frame photoelectron angular distributions (MFPAD) from the outermost valence electrons of molecules. We show that details of the MFPAD can be retrieved with high-order harmonics generated by infrared lasers from aligned molecules. Using accurately calculated photoionization transition dipole moments for fixed-in-space molecules, we show that the dependence of the magnitude and phase of the high-order harmonics on the alignment angle of the molecules observed in recent experiments can be quantitatively reproduced. This result provides the needed theoretical basis for ultrafast dynamic chemical imaging using infrared laser pulses.Comment: 5 pages, 4 figure

    Bias in Matter Power Spectra ?

    Get PDF
    We review the constraints given by the linear matter power spectra data on cosmological and bias parameters, comparing the data from the PSCz survey (Hamilton et al., 2000) and from the matter power spectrum infered by the study of Lyman alpha spectra at z=2.72 (Croft et al., 2000). We consider flat--Λ\Lambda cosmologies, allowing Λ\Lambda, H0H_0 and nn to vary, and we also let the two ratio factors rpsczr_{pscz} and rlymanr_{lyman} (ri2=Pi(k)PCMB(k)r^2_i = \frac{P_{i}(k)}{P_{CMB}(k)}) vary independently. Using a simple χ2\chi^2 minimisation technique, we find confidence intervals on our parameters for each dataset and for a combined analysis. Letting the 5 parameters vary freely gives almost no constraints on cosmology, but requirement of a universal ratio for both datasets implies unacceptably low values of H0H_0 and Λ\Lambda. Adding some reasonable priors on the cosmological parameters demonstrates that the power derived by the PSCz survey is higher by a factor 1.75\sim 1.75 compared to the power from the Lyman α\alpha forest survey.Comment: Accepted in A&

    A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor

    Full text link
    More complete knowledge of galaxy evolution requires understanding the process of star formation and interaction between the interstellar radiation field and the interstellar medium in galactic environments traversing a wide range of physical parameter space. Here we focus on the impact of massive star formation on the surrounding low metallicity ISM in 30 Doradus in the Large Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the early universe, results in less ultra-violet shielding for the formation of the molecular gas necessary for star formation to proceed. The half-solar metallicity gas in this region is strongly irradiated by the super star cluster R136, making it an ideal laboratory to study the structure of the ISM in an extreme environment. Our spatially resolved study investigates the gas heating and cooling mechanisms, particularly in the photo-dissociation regions where the chemistry and thermal balance are regulated by far-ultraviolet photons (6 eV< h\nu <13.6 eV). We present Herschel observations of far-infrared fine-structure lines obtained with PACS and SPIRE/FTS. We have combined atomic fine-structure lines from Herschel and Spitzer observations with ground-based CO data to provide diagnostics on the properties and the structure of the gas by modeling it with the Meudon PDR code. We derive the spatial distribution of the radiation field, the pressure, the size, and the filling factor of the photodissociated gas and molecular clouds. We find a range of pressure of ~ 10^5 - 1.7x10^6 cm^{-3} K and a range of incident radiation field G_UV ~ 10^2 - 2.5x10^4 through PDR modeling. Assuming a plane-parallel geometry and a uniform medium, we find a total extinction of 1-3 mag , which correspond to a PDR cloud size of 0.2 to 3pc, with small CO depth scale of 0.06 to 0.5pc. We also determine the three dimensional structure of the gas. (Abridged)Comment: 20 pages, 23 figures, accepted in A&

    The Globular Cluster System of M60 (NGC 4649). I. CFHT MOS Spectroscopy and Database

    Full text link
    We present the measurement of radial velocities for globular clusters in M60, giant elliptical galaxy in the Virgo cluster. Target globular cluster candidates were selected using the Washington photometry based on the deep 16\arcmin \times 16\arcmin images taken at the KPNO 4m and using the VIVI photometry derived from the HST/WFPC2 archive images. The spectra of the target objects were obtained using the Multi-Object Spectrograph (MOS) at the Canada-France-Hawaii Telescope (CFHT). We have measured the radial velocity for 111 objects in the field of M60: 93 globular clusters (72 blue globular clusters with 1.0(CT1)<1.71.0\le(C-T_1)<1.7 and 21 red globular clusters with 1.7(CT1)<2.41.7\le(C-T_1)<2.4), 11 foreground stars, 6 small galaxies, and the nucleus of M60. The measured velocities of the 93 globular clusters range from 500\sim 500 km s1^{-1} to 1600\sim 1600 km s1^{-1}, with a mean value of 107025+271070_{-25}^{+27} km s1^{-1}, which is in good agreement with the velocity of the nucleus of M60 (vgal=1056v_{\rm gal}=1056 km s1^{-1}). Combining our results with data in the literature, we present a master catalog of radial velocities for 121 globular clusters in M60. The velocity dispersion of the globular clusters in the master catalog is found to be 23414+13234_{-14}^{+13} km s1^{-1} for the entire sample, 22316+13223_{-16}^{+13} km s1^{-1} for 83 blue globular clusters, and 25831+21258_{-31}^{+21} km s1^{-1} for 38 red globular clusters.Comment: 29 pages, 8 figures. To appear in Ap

    Anatomy-specific classification of medical images using deep convolutional nets

    Full text link
    Automated classification of human anatomy is an important prerequisite for many computer-aided diagnosis systems. The spatial complexity and variability of anatomy throughout the human body makes classification difficult. "Deep learning" methods such as convolutional networks (ConvNets) outperform other state-of-the-art methods in image classification tasks. In this work, we present a method for organ- or body-part-specific anatomical classification of medical images acquired using computed tomography (CT) with ConvNets. We train a ConvNet, using 4,298 separate axial 2D key-images to learn 5 anatomical classes. Key-images were mined from a hospital PACS archive, using a set of 1,675 patients. We show that a data augmentation approach can help to enrich the data set and improve classification performance. Using ConvNets and data augmentation, we achieve anatomy-specific classification error of 5.9 % and area-under-the-curve (AUC) values of an average of 0.998 in testing. We demonstrate that deep learning can be used to train very reliable and accurate classifiers that could initialize further computer-aided diagnosis.Comment: Presented at: 2015 IEEE International Symposium on Biomedical Imaging, April 16-19, 2015, New York Marriott at Brooklyn Bridge, NY, US

    Chandrasekhar's Dynamical Friction and non-extensive statistics

    Full text link
    The motion of a point like object of mass MM passing through the background potential of massive collisionless particles (m<<Mm << M) suffers a steady deceleration named dynamical friction. In his classical work, Chandrasekhar assumed a Maxwellian velocity distribution in the halo and neglected the self gravity of the wake induced by the gravitational focusing of the mass MM. In this paper, by relaxing the validity of the Maxwellian distribution due to the presence of long range forces, we derive an analytical formula for the dynamical friction in the context of the qq-nonextensive kinetic theory. In the extensive limiting case (q=1q = 1), the classical Gaussian Chandrasekhar result is recovered. As an application, the dynamical friction timescale for Globular Clusters spiraling to the galactic center is explicitly obtained. Our results suggest that the problem concerning the large timescale as derived by numerical NN-body simulations or semi-analytical models can be understood as a departure from the standard extensive Maxwellian regime as measured by the Tsallis nonextensive qq-parameter.Comment: 16pp 5 figs, revised and extended version of arXiv:1202.1873 . Accepted for publication by JCA

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup
    corecore