Automated classification of human anatomy is an important prerequisite for
many computer-aided diagnosis systems. The spatial complexity and variability
of anatomy throughout the human body makes classification difficult. "Deep
learning" methods such as convolutional networks (ConvNets) outperform other
state-of-the-art methods in image classification tasks. In this work, we
present a method for organ- or body-part-specific anatomical classification of
medical images acquired using computed tomography (CT) with ConvNets. We train
a ConvNet, using 4,298 separate axial 2D key-images to learn 5 anatomical
classes. Key-images were mined from a hospital PACS archive, using a set of
1,675 patients. We show that a data augmentation approach can help to enrich
the data set and improve classification performance. Using ConvNets and data
augmentation, we achieve anatomy-specific classification error of 5.9 % and
area-under-the-curve (AUC) values of an average of 0.998 in testing. We
demonstrate that deep learning can be used to train very reliable and accurate
classifiers that could initialize further computer-aided diagnosis.Comment: Presented at: 2015 IEEE International Symposium on Biomedical
Imaging, April 16-19, 2015, New York Marriott at Brooklyn Bridge, NY, US