11,140 research outputs found

    Area-level deprivation and adiposity in children: is the relationship linear?

    Get PDF
    OBJECTIVE: It has been suggested that childhood obesity is inversely associated with deprivation, such that the prevalence is higher in more deprived groups. However, comparatively few studies actually use an area-level measure of deprivation, limiting the scope to assess trends in the association with obesity for this indicator. Furthermore, most assume a linear relationship. Therefore, the aim of this study was to investigate associations between area-level deprivation and three measures of adiposity in children: body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR). DESIGN: This is a cross-sectional study in which data were collected on three occasions a year apart (2005-2007). SUBJECTS: Data were available for 13,333 children, typically aged 11-12 years, from 37 schools and 542 lower super-output areas (LSOAs). MEASURES: Stature, mass and WC. Obesity was defined as a BMI and WC exceeding the 95th centile according to British reference data. WHtR exceeding 0.5 defined obesity. The Index of Multiple Deprivation affecting children (IDACI) was used to determine area-level deprivation. RESULTS: Considerable differences in the prevalence of obesity exist between the three different measures. However, for all measures of adiposity the highest probability of being classified as obese is in the middle of the IDACI range. This relationship is more marked in girls, such that the probability of being obese for girls living in areas at the two extremes of deprivation is around half that at the peak, occurring in the middle. CONCLUSION: These data confirm the high prevalence of obesity in children and suggest that the relationship between obesity and residential area-level deprivation is not linear. This is contrary to the 'deprivation theory' and questions the current understanding and interpretation of the relationship between obesity and deprivation in children. These results could help make informed decisions at the local level

    Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation

    Get PDF
    The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression

    Dynamic Limits on Planar Libration-Orbit Coupling Around an Oblate Primary

    Full text link
    This paper explores the dynamic properties of the planar system of an ellipsoidal satellite in an equatorial orbit about an oblate primary. In particular, we investigate the conditions for which the satellite is bound in librational motion or when the satellite will circulate with respect to the primary. We find the existence of stable equilibrium points about which the satellite can librate, and explore both the linearized and non-linear dynamics around these points. Absolute bounds are placed on the phase space of the libration-orbit coupling through the use of zero-velocity curves that exist in the system. These zero-velocity curves are used to derive a sufficient condition for when the satellite's libration is bound to less than 90 degrees. When this condition is not satisfied so that circulation of the satellite is possible, the initial conditions at zero libration angle are determined which lead to circulation of the satellite. Exact analytical conditions for circulation and the maximum libration angle are derived for the case of a small satellite in orbits of any eccentricity.Comment: Submitted to Celestial Mechanics and Dynamical Astronom

    Influence of Lithium and Lanthanum Treatment on TiO2 Nanofibers and Their Application in n-i-p Solar Cells

    Get PDF
    The addition of cations to TiO2 photoelectrodes is routinely accepted as a route to enhance the performance of conventional n‐i‐p solar cells. However, this is typically achieved in multiple steps or by the incorporation of expensive and hydroscopic cationic precursors such as lithium bis(trifluoromethanesulfonyl)imide. In addition, it is often unclear as to whether the incorporation of such cation sources is inducing “doping” or simply transformed into cationic oxides on the surface of the photoelectrodes. In this study, TiO2 nanofibers were produced through a simple electrospinning technique and modified by introducing lithium and lanthanum precursors in one step. Our results show that the addition of both cations caused minimal substitutional or interstitial doping of TiO2. Brunauer‐Emmett‐Teller measurements showed that lanthanum‐treated TiO2 nanofibers had an increase in surface area, which even exceeded that of TiO2 P25 nanoparticles. Finally, treated and untreated TiO2 nanofibers were used in n‐i‐p solar cells. Photovoltaic characteristics revealed that lanthanum treatment was beneficial, whereas lithium treatment was found to be detrimental to the device performance for both dye‐sensitized and perovskite solar cells. The results discuss new fundamental understandings for two of the commonly incorporated cationic dopants in TiO2 photoelectrodes, lithium and lanthanum, and present a significant step forward in advancing the field of materials chemistry for photovoltaics

    Body mass index has a curvilinear relationship with the percentage of body fat among children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body Mass Index (BMI), which is defined as the ratio between weight (in kg) and height (in m<sup>2</sup>), is often used in clinical practice as well as in large scale epidemiological studies to classify subjects as underweight, normal weight, overweight or obese. Although BMI does not directly measure the percentage of Body Fat (BF%), it is widely applied because it is strongly related with BF%, it is easy to measure and it is an important predictor of mortality. Among children, age and sex-specific reference values of BMI, known as percentiles, are used. However, it is not clear how strong the relationship between BMI and BF% is among children and whether the association is linear. We performed a cross-sectional study aiming at evaluating the strength and shape of the relationship between BMI and BF% among school-aged children aged 6-12 years.</p> <p>Findings</p> <p>The study was conducted on a sample of 361 football-playing male children aged 6 to 12 years in Rome, Italy. Age, weight, height and skinfold thickness were collected. BF% was estimated using 4 skinfold equations whereas BMI was converted into BMI-for-age z-score. The relationship between these variables was examined using linear regression analyses. Mean BMI was 18.2 (± 2.8), whereas BF% was influenced by the skinfold equation used, with mean values ranging from 15.6% to 23.0%. A curvilinear relationship between BMI-for-age zscore and BF % was found, with the regression line being convex. The association between BMI-for-age zscore and BF% was stronger among overweight/obese children than among normal/underweight children. This curvilinear pattern was evident in all 4 skinfold equations used.</p> <p>Conclusions</p> <p>The association between BMI-for-age zscore and BF% is not linear among male children aged 6-12 years and it is stronger among overweight and obese subjects than among normal and underweight subjects. In this age group, BMI is a valid index of adiposity only among overweight and obese subjects.</p

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure

    Local Optical Probe of Motion and Stress in a multilayer graphene NEMS

    Full text link
    Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micronic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics

    On instantons as Kaluza-Klein modes of M5-branes

    Full text link
    Instantons and W-bosons in 5d maximally supersymmetric Yang-Mills theory arise from a circle compactification of the 6d (2,0) theory as Kaluza-Klein modes and winding self-dual strings, respectively. We study an index which counts BPS instantons with electric charges in Coulomb and symmetric phases. We first prove the existence of unique threshold bound state of (noncommutative) U(1) instantons for any instanton number, and also show that charged instantons in the Coulomb phase correctly give the degeneracy of SU(2) self-dual strings. By studying SU(N) self-dual strings in the Coulomb phase, we find novel momentum-carrying degrees on the worldsheet. The total number of these degrees equals the anomaly coefficient of SU(N) (2,0) theory. We finally show that our index can be used to study the symmetric phase of this theory, and provide an interpretation as the superconformal index of the sigma model on instanton moduli space.Comment: 54 pages, 2 figures. v2: references added, figure improved, added comments on self-dual string anomaly, added new materials on the symmetric phase index, other minor correction

    In situ interface engineering for probing the limit of quantum dot photovoltaic devices.

    Get PDF
    Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells
    corecore