265,649 research outputs found

    Modeling effects of nonbreeders on population growth estimates

    Get PDF
    Acknowledgements We thank the Beissinger lab and reviewers for helpful comments on manuscript drafts. This research was funded by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (project NON- BREEDERS). The contents of this paper reflect the views of the researchers, not the views of the European Commission. Data Accessibility R-code available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.t56cn (Lee, Reid & Beissinger, 2016).Peer reviewedPostprin

    Test vectors for Rankin-Selberg LL-functions

    Get PDF
    We study the local zeta integrals attached to a pair of generic representations (π,τ)(\pi,\tau) of GLn×GLmGL_n\times GL_m, n>mn>m, over a pp-adic field. Through a process of unipotent averaging we produce a pair of corresponding Whittaker functions whose zeta integral is non-zero, and we express this integral in terms of the Langlands parameters of π\pi and τ\tau. In many cases, these Whittaker functions also serve as a test vector for the associated Rankin-Selberg (local) LL-function.Comment: arXiv admin note: text overlap with arXiv:1804.0772

    Exciton-exciton interaction and biexciton formation in bilayer systems

    Get PDF
    We report quantum Monte Carlo calculations of biexciton binding energies in ideal two-dimensional bilayer systems with isotropic electron and hole masses. We have also calculated exciton-exciton interaction potentials, and pair distribution functions for electrons and holes in bound biexcitons. Comparing our data with results obtained in a recent study using a model exciton-exciton potential [C. Schindler and R. Zimmermann, Phys. Rev. B \textbf{78}, 045313 (2008)], we find a somewhat larger range of layer separations at which biexcitons are stable. We find that individual excitons retain their identity in bound biexcitons for large layer separations.Comment: 7 pages, 11 figures, 2 table

    Pressure inequalities for nuclear and neutron matter

    Full text link
    We prove several inequalities using lowest-order effective field theory for nucleons which give an upper bound on the pressure of asymmetric nuclear matter and neutron matter. We prove two types of inequalities, one based on convexity and another derived from shifting an auxiliary field.Comment: 16 pages, published journal version - includes inequalities for spin polarized system

    High speed commercial transport fuels considerations and research needs

    Get PDF
    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different types of refineries, emphasizing jet fuel production and relative cost factors

    Laser ignition of iso-octane air aerosols

    Get PDF
    Iso-octane aerosols in air have been ignited with a focused Nd:YAG laser at pressures and temperatures of 100kPa and 270K and imaged using schlieren photography. The aerosol was generated using the Wilson cloud chamber technique. The droplet diameter, gas phase equivalence ratio and droplet number density were determined. The input laser energy and overall equivalence ratio were varied. For 270mJ pulse energies initial breakdown occurred at a number of sites along the laser beam axis. From measurements of the shock wave velocity it was found that energy was not deposited into the sites evenly. At pulse energies of 32mJ a single ignition site was observed. Overall fuel lean flames were observed to locally extinguish, however both stoichiometric and fuel rich flames were ignited. The minimum ignition energy was found to depend on the likelihood of a droplet existing at the focus of the laser beam
    corecore