
Exciton-exciton interaction and biexciton formation in bilayer systems

R. M. Lee, N. D. Drummond, and R. J. Needs
TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

�Received 11 November 2008; revised manuscript received 31 January 2009; published 12 March 2009�

We report quantum Monte Carlo calculations of biexciton binding energies in ideal two-dimensional bilayer
systems with isotropic electron and hole masses. We have also calculated exciton-exciton interaction potentials
and pair-distribution functions for electrons and holes in bound biexcitons. Comparing our data with results
obtained in a recent study using a model exciton-exciton potential �Schindler and Zimmermann, Phys. Rev. B
78, 045313 �2008��, we find a somewhat larger range of layer separations at which biexcitons are stable. We
find that individual excitons retain their identity in bound biexcitons for large layer separations.
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I. INTRODUCTION

Electrons and holes in semiconductors can combine to
form hydrogenlike bound states called excitons. The creation
and recombination of excitons is one of the principal mecha-
nisms by which light interacts with semiconductors. Further-
more, excitonic systems possess a number of unusual prop-
erties, such as the ability to transport energy without
transporting charge, suggesting a range of applications in
novel electronic devices. Excitonic systems have therefore
been the subject of numerous experimental1–5 and
theoretical6–8 studies in recent years.

In the low-density limit, excitons may be regarded as
weakly interacting neutral bosons.3 Bose-Einstein condensa-
tion of excitons is therefore possible. However, it has proved
to be difficult to obtain exciton lifetimes that are sufficiently
long for thermalization to take place, and the current experi-
mental evidence for Bose-Einstein condensation is
inconclusive.9,10 One promising approach for overcoming the
problem of short lifetimes is the development of coupled-
quantum-well �bilayer� systems, in which thin layers of
semiconductors and an applied electric field in the growth
direction are used to confine the electrons and holes to spa-
tially separated, parallel, quasi-two-dimensional wells, hin-
dering recombination and extending exciton lifetimes.1,2,5

At present our understanding of the exciton-exciton inter-
action in bilayer systems is limited. On the one hand there is
a repulsive electrostatic interaction between excitons. For ex-
ample, if the layer separation is nonzero then the excitons
have parallel dipole moments, giving an asymptotically
dominant repulsive interaction. Furthermore, the static
charge distribution of each exciton has a permanent quadru-
pole moment in general �even at zero layer separation, pro-
vided the electron and hole masses differ�, giving another
repulsive interaction term.8 On the other hand, fluctuating
dipole �van der Waals� forces result in an attraction between
excitons at short range. Because of the existence of the van
der Waals forces, it is sometimes possible for biexcitons
�bound states of pairs of excitons� to form. Biexciton forma-
tion would inhibit exciton condensation and thus knowledge
of the stability of biexcitons in different geometries is vital.
A better understanding of the interaction between excitons in
coupled quantum wells will facilitate the interpretation of
experimental data, in particular enabling the determination of

the exciton densities achieved in experiments.
The dependence of exciton and biexciton binding energies

on the layer separation has been investigated by Tan et al.,7

who found that while the exciton binding energy decays
slowly as the inverse of the layer separation, the biexciton
binding energy decays extremely rapidly. Recent studies of
the exciton-exciton interaction using a heavy-hole approxi-
mation have found there to be a critical layer separation for
each electron/hole mass ratio, beyond which biexcitons be-
come unstable with respect to dissociation into two separate
excitons.8,11 In this article we report quantum Monte Carlo
�QMC� calculations of the binding energies of biexcitons in
bilayer systems and exciton-exciton interaction potentials.

The rest of this article is arranged as follows. In Sec. II we
describe our calculations of the binding energies of biexci-
tons and investigate the range of layer separations and mass
ratios for which biexcitons are stable. In Sec. III we present
our data for the exciton-exciton interaction potential. In Sec.
IV we report pair-distribution functions �PDFs� for biexci-
tons. Finally, we draw our conclusions in Sec. V. We use
Hartree atomic units ��= �e�=me=4��0=1� throughout this
article, although we report final energies in exciton Rydbergs
(Ry

�=�e4 / �2�4��0��2�2�, where �=memh / �me+mh� is the re-
duced mass of an exciton and me and mh are the electron and
hole masses) and lengths in terms of exciton Bohr radii
�aB

� =4��0��2 / ��e2��.

II. BIEXCITON BINDING ENERGIES

We have modeled the coupled-quantum-well system by an
idealized two-dimensional �2D� bilayer, in which the elec-
trons and holes are confined to two parallel planes, and the
effective-mass tensors of the electrons and holes are isotro-
pic. In reality, electrons and holes are free to move within
quantum wells that are of finite width �e.g., one experimental
setup3 has well widths of 8 nm and a well separation of 4
nm�, although the Coulomb attraction between electrons and
holes should keep the particles confined to the inner edges of
their respective wells. We have also restricted our attention
to biexciton systems in which the two electrons have oppo-
site spins, as do the two holes, because this is the ground-
state spin configuration.

The biexciton Hamiltonian is
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where 1 and 2 denote the electron coordinates, a and b de-
note the hole coordinates, and r12= �r1−r2�, r1a= �r1−ra�, etc.
We have studied biexcitons and exciton-exciton interactions
using the variational Monte Carlo �VMC� and diffusion
quantum Monte Carlo �DMC� methods. In the VMC method
the expectation value of the Hamiltonian with respect to a
trial wave function is calculated using a stochastic integra-
tion technique.12 Trial wave functions usually contain a num-
ber of free parameters, to be optimized by minimizing either
the energy expectation value or the variance of the energy.
DMC is a stochastic projector technique for solving the
many-body Schrödinger equation.12,13 DMC is in principle
exact for systems with nodeless ground-state wave functions,
such as the biexciton systems studied in this work.

Our trial wave function was similar to that of Tan et al.,7

with additional flexibility provided by multiplication by a
two-body Jastrow factor.14 The additional Jastrow factor con-
sisted of the exponential of a power series in the interparticle
distances, and increased the number of variable parameters
by 16 and 24 for me=mh and me�mh, respectively. This
wave function satisfies the Kato cusp conditions when par-
ticles coincide,15 and reduces to the form appropriate for two
isolated excitons when the excitons are far apart. We also
carried out some calculations using a three-body Jastrow
factor.16 For a typical case where EVMC−EDMC=3�10−4Ry

�,
the reduction in the VMC energy from the inclusion of a
three-body term was 10−4Ry

�. Obtaining the best possible trial
wave function was especially important for the PDF calcula-
tions described in Sec. IV.

We optimized the free parameters in our wave function by
unreweighted variance minimization17–19 and linear-least-
squares energy minimization.20 The trial wave function can
describe the dissociated system more accurately than it can
describe the bound system; hence energy minimization is the
more sensible choice for investigating binding, although this
depends upon initial parameters and configurations. Al-
though the DMC energy is independent of the trial wave
function, the statistical efficiency of the method is increased
when the wave function is improved. By using a more flex-

ible wave function, we have been able to achieve consider-
ably smaller error bars than Tan et al.7 All the QMC calcu-
lations reported in this article were performed using the
CASINO program.16

For each layer separation d and electron/hole mass ratio
�=me /mh, the biexciton binding energy was calculated as
Eb=2EX−EXX, where EX is the energy of a single exciton and
EXX is the energy of the four-body biexciton system. The
exciton energy EX was obtained using a numerically exact
Runge-Kutta integration technique as described in Ref. 7,
while DMC was used to calculate the biexciton energy EXX.
The DMC energies were converged with respect to time step
and population size; any remaining bias is much smaller than
the statistical error bars.

Biexciton binding energies for �=0.3, 0.5, and 1 are
shown in Figs. 1–3, respectively. It can be seen that our
results are close to those of Tan et al.;7 the difference arises
from our use of exact single-exciton energies. Tan et al. used
Eq. �3� of Ref. 7 �a rational functional fitted to the exact
results� to generate EX values, introducing a small, system-
atic error. Removing this error reveals that our DMC data are
in statistical agreement with those of Tan et al. The random
errors in our data are much smaller, so we can locate the
layer separation at which the biexciton ceases to be bound.
Tan et al. fitted an exponential form to their binding-energy
data, which resulted in the erroneous conclusion that biexci-
ton binding persists to infinite layer separation.

Our DMC results show some deviation from the binding
energies obtained by Schindler and Zimmermann,8 especially
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FIG. 1. �Color online� Biexciton binding energy Eb as a function
of layer separation d for electron/hole mass ratio �=0.3. Panel �a�
shows the binding energy for layer separations close to the critical
separation; panel �b� shows the binding energy for small layer
separations.
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FIG. 2. �Color online� Biexciton binding energy Eb as a function
of layer separation d for electron/hole mass ratio �=0.5. Panel �a�
shows the binding energy for layer separations close to the critical
separation; panel �b� shows the binding energy for small layer
separations.
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FIG. 3. �Color online� Biexciton binding energy Eb as a function
of layer separation d for equal electron and hole masses ��=1�. The
square shows Schindler and Zimmermann’s estimate of the critical
point at which the biexciton ceases to be bound �Ref. 8�.
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when d→0, when Eb→0, and when the mass ratio is close
to 1, because we have performed a full simulation of all four
particles in the biexciton, whereas they simulated a pair of
excitons interacting via a model potential. The deviation of
our binding energies from those of Schindler and Zimmer-
mann is approximately 4�10−3Ry

� where Eb→0. At smaller
d the agreement is much better, but below d�0.1aB

� we find
larger differences, reaching a maximum of almost 0.1Ry

� at
d=0, as shown in Figs. 1 and 2.

As can be seen in Fig. 4, which shows the range of � and
d over which the biexciton is stable, we find a somewhat
larger region of stability for the biexciton than Schindler and
Zimmermann. Let dcrit��� be the critical layer separation,
beyond which the biexciton is unbound. As �→0, the heavy-
hole approximation made by Schindler and Zimmermann be-
comes increasingly accurate, and our results for dcrit�0� agree
with theirs. On the other hand, for �=1 their interaction
potential is less accurate and our value of dcrit�1� is therefore
significantly higher than theirs.

Our data are mostly in excellent agreement with those of
Meyertholen and Fogler,21 although at small � we find a
slightly larger region of biexciton stability. This is not an
artifact of the extrapolation, which followed the scheme set
out in Ref. 21, for we were able to find points with nonzero
binding energies outside the region of stability defined by
Meyertholen and Fogler. This is consistent with the varia-
tional principle that applies to their results.

One may parametrize the boundary of the region of biex-
citon stability in Fig. 4. Expressing dcrit in terms of �+�−1

ensures that the correct behavior is observed upon exchang-
ing the electron and hole masses �i.e., dcrit��−1�=dcrit����. A
suitable fitting function is

dcrit��� =
F

�� + �−1
tanh�G�� + �−1� + 0.93, �2�

where the parameter values F=1.19�5� and G=−0.50�4� give
a �2 error of 0.4 per data point. The functional form of Eq.
�2� satisfies most of the conditions derived in Ref. 21: dcrit� �0�
is infinite, dcrit� �1�=0, and dcrit�0�−dcrit������ for �	1.

III. EXCITON-EXCITON INTERACTION

The exciton-exciton interaction potential EI�R� at separa-
tion R is defined to be the energy of a biexciton system in
which the centers of mass of the two excitons are constrained
to be a distance R apart, minus the energies of two isolated
excitons. The Hamiltonian for the constrained biexciton sys-
tem may be written as
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where r1 and r2 are the electron-hole separations within the
two excitons. The first two potential terms represent the in-
traexciton electron-hole potentials, followed by the hole-
hole, electron-electron, and finally the two interexciton
electron-hole terms. DMC calculations can then be per-
formed for an effective two-particle system, with coordinates
r1 and r2. The kinetic-energy operator only includes deriva-
tives with respect to in-plane coordinates. The form of trial
wave function was the same as that used in Sec. II, but with
the electron and hole coordinates being re-expressed in terms
of r1, r2, and the fixed vector R.

The center-of-mass constraint may not be used to calcu-
late the interaction potential at zero exciton-exciton separa-
tion because in that limit the repulsion becomes strong
enough to dissociate the two individual excitons. The ground
state of Eq. �3� at very small R is thus not the physical
quantity we require. We have calculated the exciton-exciton
potential only at separations R for which the excitons remain
bound. Figure 5 demonstrates this effect, exhibiting a poten-
tial which decreases at small R to physically unreasonable
values.
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FIG. 4. �Color online� The region of biexciton stability from
DMC calculations compared with that found by Schindler and Zim-
mermann �Ref. 8� and Meyertholen and Fogler �Ref. 21�. The criti-
cal points were found by extrapolating the biexciton binding ener-
gies to zero using the fitting form set out in Ref. 21. The statistical
errors are comparable to the size of the symbols.
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FIG. 5. �Color online� Exciton-exciton interaction potential
EI�R� as a function of center-of-mass separation R with �=1. The
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dipole-dipole interaction energy �Eq. �4��.
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Our DMC calculations yield a smooth exciton-exciton po-
tential. The interaction energies shown in Fig. 5 do not de-
viate from simple dipole-dipole repulsion of the form

EI�R� =
2d2

R3 �4�

by more than 3.5�10−5Ry
� above an exciton-exciton separa-

tion of �7aB
� . The fits to the interaction potential data are

shown in the Appendix. The repulsive tails of the interaction
�R
10aB

�� calculated for pairs of excitons with 0.1���1
all collapse onto a single curve for each value of d when
scaled into excitonic units, showing a maximum deviation
from each other and Eq. �4� of 8�10−5Ry

�.
For an electron/hole mass ratio of �=0, our results should

reduce to the exciton-exciton interaction under the heavy-
hole approximation.8 Figure 6 demonstrates the agreement
with the interaction potentials calculated by Schindler and
Zimmermann. Our points are slightly below the curves of
Ref. 8 at the potential minimum, although the agreement is
in general very good, and well within statistical error at large
R. Equation �A1� �in the Appendix� shows a functional form
suitable for fitting to our data.

For large layer separations d the interaction is purely re-
pulsive, whereas for smaller d the interaction is attractive at
short range. The critical point in the binding occurs near the
layer separation for which the minimum in the exciton-

exciton interaction potential disappears. Schindler and Zim-
mermann’s approach uses a model exciton-exciton interac-
tion potential which depends on the layer separation d but
not the mass ratio �.8 Constraining the center of mass rather
than the hole positions allows us to observe the interaction
potential for different mass ratios and layer separations, so
that we do not need to apply the interaction potential ob-
tained in one system to another with different parameters.
The dependence of the interaction potential upon � is clear
from Fig. 7, and is consistent with the results shown in Fig.
4, in which biexcitons are stable at d=0.9aB

� for �=0 but not
�=1.

For the strictly two-dimensional case �d=0�, we can com-
pare our values of the Haynes factor, fH=Eb /EX, with those
of previous work. Usukura et al.22 performed numerically
exact variational calculations, finding fH=0.665 for �=0 and
fH=0.193 for �=1. These data agree well with our values of
fH=0.670�3� and 0.19287�2� for �=0 and 1, respectively.

IV. PDFs IN BIEXCITONS

The PDFs of electrons and holes in biexcitons reveal im-
portant information about the physics of biexciton binding.
The electron-electron PDF is defined as
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FIG. 7. �Color online� Exciton-exciton interaction potential
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FIG. 8. �Color online� PDF geh
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hole pair from the exact solution of Eq. �2� in Ref. 7, shown at
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gee�r� =
1

2�r
����re↑ − re↓� − r�	 , �5�

where re↑ and re↓ are the positions of the up- and down-spin
electrons and the angled brackets denote the average over
sets of electron and hole coordinates distributed as the square
of the ground-state wave function. The hole-hole PDF is de-
fined in a similar fashion. The electron-hole PDF is defined
to be

geh�r� =
1

8�r
 �
�e,�h��↑,↓

���re�e

� − rh�h

� � − r�� , �6�

where re�e

� −rh�h

� is the in-plane separation of an electron and
a hole. The PDFs may be accumulated within QMC by bin-
ning interparticle distances. The errors in the VMC and
DMC estimates of the PDF �gVMC�r� and gDMC�r�� are linear
in the error in the trial wave function; however, the error in
the extrapolated estimate gext�r�=2gDMC�r�−gVMC�r� is sec-
ond order in the error in the wave function.12 Our VMC and
DMC PDFs are very close to one another so the errors in our
extrapolated estimates are small. The PDFs presented here
have been normalized such that

�
0



2�rgext�r�dr = 1. �7�

Figure 8 shows the electron-hole PDF for a single exciton,
geh

single, obtained from the exact numerical solution to Eq. �2�
in Ref. 7. Figures 9 and 10 show electron-electron and
electron-hole PDFs, respectively, for the biexciton system
with �=1. At smaller layer separations the electron-hole
PDF exhibits a larger peak at zero interparticle separation,
and decays more rapidly with interparticle distance.

The size of the biexciton is most easily judged by exam-
ining the electron-electron PDF �which is identical to the
hole-hole PDF for �=1�. The size of the biexciton diverges
as the critical layer separation �dcrit=0.43aB

� for �=1� is ap-
proached. At zero layer separation, the electron-electron PDF
is negligible for interparticle distances larger than 3aB

� and
has a maximum at 0.3aB

� .
Although a second peak cannot be discerned in Fig. 10,

the quantity 2geh
ext�r�−geh

single�r� plotted in Fig. 11 allows one
to see the interexciton electron-hole PDF superimposed on
the change in the intraexciton PDF due to the presence of the
other exciton. This has the consequence of approximately
removing the intraexciton contribution from the biexciton
PDF. The peaks in Fig. 11 occur at the same separation as
those in Fig. 9, confirming that excitons retain their identity
in bound biexcitons for large layer separations, even when
electrons and holes have equal masses. For zero layer sepa-
ration there is no discernable peak, however, and the function
rises sharply to a maximum at zero interparticle separation.
This may be due to the large change in the single-exciton
PDF due to the presence of the other exciton swamping the
interexciton electron-hole PDF. We are thus unable to con-
clude with certainty that excitons retain their identities in
bound biexcitons throughout the region of biexciton stability.
Attempts to describe biexciton properties by using effective
exciton-exciton potentials are expected to be more successful
when the layer separation is large.

V. CONCLUSIONS

We have carried out a QMC study of the interaction be-
tween pairs of excitons in bilayer systems. We have calcu-
lated the exciton-exciton interaction potential by constrain-
ing the center-of-mass separation, which we believe gives a
more accurate pair potential at short range than the potential
calculated by assuming the holes to be infinitely heavy.8 We

TABLE I. Coefficients appearing in Eq. �A1� allowing the re-
production of fits to the points shown in Fig. 6. Performing the fits
using data with R�3aB

� yields �2 errors of 0.79, 1.1, and 1.4 per
data point for d=0.9, 1.0, and 1.1aB

� , respectively.

Parameter d=0.9aB
� d=1.0aB

� d=1.1aB
�

p1 −70.18 −66.25 −61.89

p2 −4243 −4538 −4804

p3 4296 8422 12 560

p4 8.086 7.319 6.420

p5 21 520 30 740 40 610

p6 −15 100 −54 120 −98 510

p7 0.1284 0.1451 0.2424
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FIG. 10. �Color online� Extrapolated electron-hole PDF geh
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find that for large layer separations, excitons retain their
identity when they bind to form a biexciton, suggesting that
treating excitons as individual particles is a reasonable ap-
proximation. However, by solving the Schrödinger equation
for all four particles in a biexciton, we find that the range of
layer separations and mass ratios over which biexcitons are
stable is somewhat larger than the region of stability pre-
dicted using exciton-exciton pair potentials.
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APPENDIX: FIT TO THE EXCITON-EXCITON
POTENTIAL

The exciton-exciton potential curves with �=0 in Fig. 6
may be fitted to a function of the form

EI = �p1 +
1000

R
+

p2

R2 +
p3

R4�exp�−
p4R3

1000
�

+ �2d2

R3 +
p5

R5 +
p6

R6��1 − exp�− p7R3�� , �A1�

where d is the layer separation and p1 , . . . , p7 are the fitting
parameters. The function has the correct long-range behav-
ior, EI�2d2 /R3 for R→. The fitting parameter values are
shown in Table I.

The interaction potentials in Fig. 5 with �=1 may be
fitted to a function similar to Eq. �A1�. This time the form is

EI = �2d2

R3 +
p1

R5 +
p2

R6��1 − exp�−
p3Rp4

1000
�� , �A2�

where the long-range behavior is once again reproduced cor-
rectly and each of the terms in the first bracket has a physical
interpretation. The 1 /R5 term may be associated with
quadrupole-quadrupole repulsion and the 1 /R6 term with van
der Waals attraction. The signs of the fitting parameters are
consistent with this interpretation for d=0.2 and 0.5aB

� . The
parameter values are shown in Table II.
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