94 research outputs found

    Parental childhood growth and offspring birthweight : Pooled analyses from four birth cohorts in low and middle income countries

    Get PDF
    Funding Information Bill and Melinda Gates Foundation. Grant Number: OPP1020058 Wellcome Trust 089257/Z/09/Z Contract grant sponsor: the National Heart, Lung and Blood Institute at National Institutes of Health. Grant Number: HHSN 268200900028C to the Center of Excellence – INCAP/ Guatemala; and Grand Challenges Canada (Grant number: 0072‐03 to the Grantee, The Trustees of the University of Pennsylvania)Peer reviewedPublisher PD

    A lower bound on the mass of Dark Matter particles

    Full text link
    We discuss the bounds on the mass of Dark Matter (DM) particles, coming from the analysis of DM phase-space distribution in dwarf spheroidal galaxies (dSphs). After reviewing the existing approaches, we choose two methods to derive such a bound. The first one depends on the information about the current phase space distribution of DM particles only, while the second one uses both the initial and final distributions. We discuss the recent data on dSphs as well as astronomical uncertainties in relevant parameters. As an application, we present lower bounds on the mass of DM particles, coming from various dSphs, using both methods. The model-independent bound holds for any type of fermionic DM. Stronger, model-dependent bounds are quoted for several DM models (thermal relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The latter bounds rely on the assumption that baryonic feedback cannot significantly increase the maximum of a distribution function of DM particles. For the scenario in which all the DM is made of sterile neutrinos produced via non-resonant mixing with the active neutrinos (NRP) this gives m_nrp > 1.7 keV. Combining these results in their most conservative form with the X-ray bounds of DM decay lines, we conclude that the NRP scenario remains allowed in a very narrow parameter window only. This conclusion is independent of the results of the Lyman-alpha analysis. The DM model in which sterile neutrinos are resonantly produced in the presence of lepton asymmetry remains viable. Within the minimal neutrino extension of the Standard Model (the nuMSM), both mass and the mixing angle of the DM sterile neutrino are bounded from above and below, which suggests the possibility for its experimental search.Comment: 20 pages, published in JCA

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    Why do we differ in number sense? Evidence from a genetically sensitive investigation

    Get PDF
    Basic intellectual abilities of quantity and numerosity estimation have been detected across animal species. Such abilities are referred to as ‘number sense’. For human species, individual differences in number sense are detectable early in life, persist in later development, and relate to general intelligence. The origins of these individual differences are unknown. To address this question, we conducted the first large-scale genetically sensitive investigation of number sense, assessing numerosity discrimination abilities in 837 pairs of monozygotic and 1422 pairs of dizygotic 16-year-old twin pairs. Univariate genetic analysis of the twin data revealed that number sense is modestly heritable (32%), with individual differences being largely explained by non-shared environmental influences (68%) and no contribution from shared environmental factors. Sex-Limitation model fitting revealed no differences between males and females in the etiology of individual differences in number sense abilities. We also carried out Genome-wide Complex Trait Analysis (GCTA) that estimates the population variance explained by additive effects of DNA differences among unrelated individuals. For 1118 unrelated individuals in our sample with genotyping information on 1.7 million DNA markers, GCTA estimated zero heritability for number sense, unlike other cognitive abilities in the same twin study where the GCTA heritability estimates were about 25%. The low heritability of number sense, observed in this study, is consistent with the directional selection explanation whereby additive genetic variance for evolutionary important traits is reduced

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Application of linear elastic fracture mechanics on electric discharge breakdown in interconnects

    No full text
    Analog to the approach used in linear elastic fracture mechanics, the electric discharge breakdown in interconnects is analyzed. The electric field is solved using the conformal mapping technique. The direction of electric field at the upper slit surface is opposite to that at the lower surface. Similar to the Griffith fracture criterion, we propose that the critical power release rate for crack propagation is equal to the electric breakdown power required to create a unit area of microcrack. It is found that the power release rate increases with decreasing linewidth of interconnect. (C) 1998 American Institute of Physics. [S0003-6951(98)04650-6]

    Solvent-induced crystallization in poly(ethylene terephthalate) during mass transport: Mechanism and boundary condition

    No full text
    The mechanism of mass transport and the related crystallization in poly(ethylene terephthalate) (PET) were studied. Solvent-induced crystallization can occur during the transport process in PET at low temperature. The important effect of changing the surrounding medium to solvent molecules is to reduce the glass transition temperature. This phenomenon is called "plasticization". The extent of plasticization relies on the amount of solvent around the polymer molecules, i.e., the concentration of solvent which will depend on the mass transport before saturation. Evidences for the transport mechanism in the first stage of crystallization were revealed. The distinct diffusion front was determined from the measurements of optical microscope and microhardness. The differential scanning calorimeter (DSC) curves displayed crystallization exothermic peaks whose areas decreased with the amounts of amorphous regions, representing the solvent-induced crystallization (SINC) process. The observed phenomenon of multiple-stage crystallizations is associated with the variation of boundary conditions during mass transport, which was ignored in most theoretical analyses

    Acetone transport in poly(ethylene terephthalate) and related phenomena

    No full text
    The acetone transport in poly(ethylene terephthalate) (PET) and related phenomena was investigated. Based on Harmon's model for Case I, Case II, and the anomalous transport, we analyzed the data of mass uptake. The diffusivity for Case I and the velocity for Case II satisfied the Arrhenius plot. It was found that the solvent moves from outer surfaces to the center according to Case I kinetics, and there is movement in the opposite direction according to Case II kinetics during the mass uptake. This result indicated that pure Case II behavior did not appear in the PET-acetone system. The saturated amount of acetone in PET satisfied the van't Hoff plot. X-ray diffraction pattern and DSC curve showed solvent-induced crystallites and thermal crystallites. The results of density measurement explained the difference of the sorption kinetics between the acetone-treated PET crystallites and thermally treated PET. (C) 1998 John Wiley & Sons, Inc
    corecore