51 research outputs found

    Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations

    Get PDF
    Habitat fragmentation and a decrease in population size may lead to a loss in population genetic diversity. For the first time, the reduction in genetic diversity in the northernmost limit of natural occurence (southeastern Brazil) of Araucaria angustifolia in comparison with populations in the main area of the species continuous natural distribution (southern Brazil), was tested. The 673 AFLPs markers revealed a high level of genetic diversity for the species (Ht = 0.27), despite anthropogenic influence throughout the last century, and a decrease of H in isolated populations of southeastern Brazil (H = 0.16), thereby indicating the tendency for higher genetic diversity in remnant populations of continuous forests in southern Brazil, when compared to natural isolated populations in the southeastern region. A strong differentiation among southern and southeastern populations was detected (AMOVA variance ranged from 10%-15%). From Bayesian analysis, it is suggested that the nine populations tested form five “genetic clusters” (K = 5). Five of these populations, located in the northernmost limit of distribution of the species, represent three “genetic clusters”. These results are in agreement with the pattern of geographic distribution of the studied populations

    The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    This is the final version of the article. Available from Copernicus Publications via the DOI in this record.Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15ka) with a temporal resolution better than 1000years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft Access™ at https://doi.org/10.1594/PANGAEA.870867.The members of the ACER project wish to thank the QUEST-DESIRE (UK and France) bilateral project, the INQUA International Focus Group ACER and the INTIMATE-COST action for funding a suite of workshops to compile the ACER pollen and charcoal database and the workshop on ACER chronology that allow setting the basis for harmonizing the chronologies. Josué M. Polanco-Martinez was funded by a Basque Government postdoctoral fellowship (POS_2015_1_0006) and Sandy P. Harrison by the ERC Advanced Grant GC2.0: unlocking the past for a clearer future

    Interdisciplinary paleovegetation study in the Fernando de Noronha Island (Pernambuco State), northeastern Brazil

    Get PDF
    The aim of this research was to reconstruct vegetation changes (with climate inferences) that occurred during the Holocene in the Fernando de Noronha Island, Pernambuco State, northeastern Brazil. The research approach included the use of geochemical (mineralogy, elemental), carbon isotopes (δ13C, 14C) and pollen analyses in soil organic matter (SOM) and sediments collected in Lagoa da Viração and Manguezal do Sueste. The carbon isotopes data of SOM indicated that there was no significant vegetation changes during the last 7400 BP, suggesting that the climate was not the determinant factor for the vegetation dynamics. The pollen analysis of the sediment of a core collected in the Lagoa da Viração showed the absence of Quaternary material in the period between 720 BP and 90 BP. The mineralogical analysis of deeper layer showed the presence of diopside indicating this material was developed "in situ". Only in the shallow part of the core were found pollen of similar plant species of the modern vegetation. The geochemistry and isotope results, in association with the sediment type and pollen analyses of sediment samples of Manguezal do Sueste, indicated variations in the vegetation and in its location since the middle Holocene. Such variations can be associated with climatic events and sea level oscillations and also with anthropogenic events considering the last five hundred years._________________________________________________________________________________________ RESUMO: Esta pesquisa teve o objetivo de reconstruir trocas de vegetação (com referências climáticas) que ocorreram durante o Holoceno na ilha de Fernando de Noronha, Estado de Pernambuco, nordeste do Brasil. Para o desenvolvimento da pesquisa utilizou-se de análises geoquímicas (minerais, elementar), isótopos do carbono (δ13C, 14C) e análises polínicas em solos e sedimentos coletados na Lagoa da Viração e no manguezal do Sueste. Os isótopos do carbono dos solos indicaram que não houve trocas significativas de vegetação durante os últimos 7400 anos AP, sugerindo que o clima não foi um fator determinante para a dinâmica da vegetação. A análise polínica dos sedimentos da Lagoa da Viração mostrou ausência de elementos quaternários no período entre 720 AP e 90 AP. A análise mineralógica das camadas mais profundas mostrou a presença de diopsídeo, indicando que este material foi desenvolvido"in situ". Somente na parte superficial do testemunho foram encontrados palinomorfos de plantas similares à vegetação moderna. Os resultados geoquímicos e isotópicos, em associação com o tipo de sedimento e as análises polínicas das amostras de sedimento do Manguezal do Sueste, indicaram variações na vegetação e na sua localização desde o Holoceno médio. Tais variações podem estar associadas a eventos climáticos e oscilações do nível do mar e também a eventos antrópicos considerando os últimos quinhentos anos

    High Levels of Diversity Uncovered in a Widespread Nominal Taxon: Continental Phylogeography of the Neotropical Tree Frog

    Get PDF
    Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered

    Genetic Diversity and Population History of a Critically Endangered Primate, the Northern Muriqui (Brachyteles hypoxanthus)

    Get PDF
    Social, ecological, and historical processes affect the genetic structure of primate populations, and therefore have key implications for the conservation of endangered species. The northern muriqui (Brachyteles hypoxanthus) is a critically endangered New World monkey and a flagship species for the conservation of the Atlantic Forest hotspot. Yet, like other neotropical primates, little is known about its population history and the genetic structure of remnant populations. We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion. Bayesian and classic analyses show that this finding may be attributed to the joint contribution of female-biased dispersal, demographic stability, and a relatively large historic population size. Past population stability is consistent with a central Atlantic Forest Pleistocene refuge. In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (ΦST = 0.49, ΦCT = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene. Genetic diversity is higher in populations living in larger areas (>2,000 hectares), but it is remarkably low in the species overall (θ = 0.018). Three populations occurring in protected reserves and one fragmented population inhabiting private lands harbor 22 out of 23 haplotypes, most of which are population-exclusive, and therefore represent patchy repositories of the species' genetic diversity. We suggest that these populations be treated as discrete units for conservation management purposes

    Hypotheses to explain the origin of species in Amazonia

    Full text link
    corecore