44 research outputs found

    Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology

    Get PDF
    AbstractThe large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett's frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett's frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett's tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett's frog model provides inimitable advantages for developmental studies—and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution

    The role of developmental plasticity in evolutionary innovation

    Get PDF
    Explaining the origins of novel traits is central to evolutionary biology. Longstanding theory suggests that developmental plasticity, the ability of an individual to modify its development in response to environmental conditions, might facilitate the evolution of novel traits. Yet whether and how such developmental flexibility promotes innovations that persist over evolutionary time remains unclear. Here, we examine three distinct ways by which developmental plasticity can promote evolutionary innovation. First, we show how the process of genetic accommodation provides a feasible and possibly common avenue by which environmentally induced phenotypes can become subject to heritable modification. Second, we posit that the developmental underpinnings of plasticity increase the degrees of freedom by which environmental and genetic factors influence ontogeny, thereby diversifying targets for evolutionary processes to act on and increasing opportunities for the construction of novel, functional and potentially adaptive phenotypes. Finally, we examine the developmental genetic architectures of environment-dependent trait expression, and highlight their specific implications for the evolutionary origin of novel traits. We critically review the empirical evidence supporting each of these processes, and propose future experiments and tests that would further illuminate the interplay between environmental factors, condition-dependent development, and the initiation and elaboration of novel phenotypes

    Phenotypic robustness can increase phenotypic variability after non-genetic perturbations in gene regulatory circuits

    Full text link
    Non-genetic perturbations, such as environmental change or developmental noise, can induce novel phenotypes. If an induced phenotype confers a fitness advantage, selection may promote its genetic stabilization. Non-genetic perturbations can thus initiate evolutionary innovation. Genetic variation that is not usually phenotypically visible may play an important role in this process. Populations under stabilizing selection on a phenotype that is robust to mutations can accumulate such variation. After non-genetic perturbations, this variation can become a source of new phenotypes. We here study the relationship between a phenotype's robustness to mutations and a population's potential to generate novel phenotypic variation. To this end, we use a well-studied model of transcriptional regulation circuits. Such circuits are important in many evolutionary innovations. We find that phenotypic robustness promotes phenotypic variability in response to non-genetic perturbations, but not in response to mutation. Our work suggests that non-genetic perturbations may initiate innovation more frequently in mutationally robust gene expression traits.Comment: 11 pages, 5 figure

    Genes, social transmission, but not maternal effects influence responses of wild Japanese macaques (Macaca fuscata) to novel-object and novel-food tests

    Get PDF
    Using long-term maternal pedigree data, microsatellite analysis, and behavioral tests, we examined whether personality differences in wild Japanese macaques (Macaca fuscata) are associated with additive genetic effects, maternal influences, or belonging to a particular social group. Behaviors elicited by novel-object tests were defined by a component related to caution around novel-objects (Ob-PC1) and behaviors elicited by novel food-tests were defined by correlated components related to consummatory responses (Fo-PC1) and caution around novel foods (Fo-PC2). The repeatability of Ob-PC1 was modest and not significant; the repeatabilities of Fo-PC1 and Fo-PC2 were moderate and significant. Linear mixed effects models found that sex, age, sex × age, provisioning, trial number, date, time of day, season, and distance to the closest monkey were not related to personality. Linear mixed effects models of females older than 2 years found that high rank was associated with greater caution around novel objects. Linear models were used to determine whether sex, age, group membership, maternal kinship, or relatedness had independent effects on the personality similarity of dyads. These analyses found that pairs of macaques that lived in the same group were less similar in their caution around novel objects, more closely related pairs of macaques were more similar in their tendency to eat novel food, and that pairs of macaques in the same group were more similar in how cautious they were around novel foods. Together, these findings suggest that personality in this population of wild monkeys was driven by rank, genetic effects, and group effects, the latter possibly including the need to exploit different niches in the environment

    16S-raw-.001-abundance.representative.sequences

    No full text
    This fasta file includes 16S sequence data from different environmental samples. Within QIIME2, DADA2 was used to remove primer sequences from the reads, perform error correction, identify sequence variants, and remove chimeric sequences. Sequence variants were then classified by a naive Bayes classifier within QIIME2 using release of 128 of the Silva SSU database. An abundance filter was applied, and sequence variants that did not compose at least 0.1% of at least one library were removed from all libraries. The fasta file includes all variants that passed the abundance filter

    All_BB_Layers

    No full text
    This data table organizes how many broodballs were laid in each replicate container by layer. It is used for the statistics of Phase 1 maternal behavior and the corresponding Figure 2

    Phase 1 Offspring Responses

    No full text
    This data table includes details regarding the offspring values measured in Phase 1. It is used for the statistics of Phase 1 offspring responses and the corresponding Figure 3

    Phase 2 Maternal and Offpsring Responses

    No full text
    This data table includes details regarding the offspring values measured in Phase 2. It is used for the statistics of Phase 2 maternal behaviors and offspring responses and the corresponding Figure 4
    corecore