116 research outputs found

    Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks

    Get PDF
    International audienceHydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5–3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils

    Experimental fossilisation of viruses from extremophilic Archaea

    Get PDF
    The role of viruses at different stages of the origin of life has recently been reconsidered. It appears that viruses may have accompanied the earliest forms of life, allowing the transition from an RNA to a DNA world and possibly being involved in the shaping of tree of life in the three domains that we know presently. In addition, a large variety of viruses has been recently identified in extreme environments, hosted by extremophilic microorganisms, in ecosystems considered as analogues to those of the early Earth. Traces of life on the early Earth were preserved by the precipitation of silica on the organic structures. We present the results of the first experimental fossilisation by silica of viruses from extremophilic Archaea (SIRV2 – <i>Sulfolobus islandicus</i> rod-shaped virus 2, TPV1 – <i>Thermococcus prieurii</i> virus 1, and PAV1 – <i>Pyrococcus abyssi</i> virus 1). Our results confirm that viruses can be fossilised, with silica precipitating on the different viral structures (proteins, envelope) over several months in a manner similar to that of other experimentally and naturally fossilised microorganisms. This study thus suggests that viral remains or traces could be preserved in the rock record although their identification may be challenging due to the small size of the viral particles

    Analysis of HER2 genomic binding in breast cancer cells identifies a global role in direct gene regulation.

    Get PDF
    HER2 is a transmembrane receptor tyrosine kinase, which plays a key role in breast cancer due to a common genomic amplification. It is used as a marker to stratify patients in the clinic and is targeted by a number of drugs including Trastuzumab and Lapatinib. HER2 has previously been shown to translocate to the nucleus. In this study, we have explored the properties of nuclear HER2 by analysing the binding of this protein to the chromatin in two breast cancer cell lines. We find genome-wide re-programming of HER2 binding after treatment with the growth factor EGF and have identified a de novo motif at HER2 binding sites. Over 2,000 HER2 binding sites are found in both breast cancer cell lines after EGF treatment, and according to pathway analysis, these binding sites were enriched near genes involved in protein kinase activity and signal transduction. HER2 was shown to co-localise at a small subset of regions demarcated by H3K4me1, a hallmark of functional enhancer elements and HER2/H3K4me1 co-bound regions were enriched near EGF regulated genes providing evidence for their functional role as regulatory elements. A chromatin bound role for HER2 was verified by independent methods, including Proximity Ligation Assay (PLA), which confirmed a close association between HER2 and H3K4me1. Mass spectrometry analysis of the chromatin bound HER2 complex identified EGFR and STAT3 as interacting partners in the nucleus. These findings reveal a global role for HER2 as a chromatin-associated factor that binds to enhancer elements to elicit direct gene expression events in breast cancer cells

    A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance

    Get PDF
    Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine

    Cytoskeleton Remodeling Induced by SMYD2 Methyltransferase Drives Breast Cancer Metastasis

    Get PDF
    Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis

    Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    Get PDF
    Contains fulltext : 88022.pdf (publisher's version ) (Closed access)PURPOSE: In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. METHODS: Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of (111)In-albumin, (111)In-minigastrin, (111)In-exendin and (111)In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of (111)In-minigastrin, (111)In-exendin and (111)In-octreotide was determined. RESULTS: FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of (111)In-albumin, (111)In-exendin and (111)In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide #6), was selected for in vivo testing. In rats, 5 mg of peptide #6 very efficiently inhibited the renal uptake of (111)In-minigastrin, by 88%. Uptake of (111)In-exendin and (111)In-octreotide was reduced by 26 and 33%, respectively. CONCLUSIONS: The albumin-derived peptide #6 efficiently inhibited the renal reabsorption of (111)In-minigastrin, (111)In-exendin and (111)In-octreotide and is a promising candidate for kidney protection in PRRT.1 februari 201

    A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance

    Get PDF
    Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine

    Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association

    Get PDF
    Background: Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings: Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance: The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis
    corecore