17 research outputs found
Thermo-mechanical FE model with memory effect for 304L austenitic stainless steel presenting microstructure gradient
The main purpose of this study is to determine, via a three dimensions Finite
Element analysis (FE), the stress and strain fields at the inner surface of a
tubular specimen submitted to thermo-mechanical fatigue. To investigate the
surface finish effect on fatigue behaviour at this inner surface, mechanical
tests were carried out on real size tubular specimens under various thermal
loadings. X ray measurements, Transmission Electron Microscopy observations and
micro-hardness tests performed at and under the inner surface of the specimen
before testing, revealed residual internal stresses and a large dislocation
microstructure gradient in correlation with hardening gradients due to
machining. A memory effect, bound to the pre-hardening gradient, was introduced
into an elasto-visco-plastic model in order to determine the stress and strain
fields at the inner surface. The temperature evolution on the inner surface of
the tubular specimen was first computed via a thermo-elastic model and then
used for our thermo-mechanical simulations. Identification of the
thermo-mechanical model parameters was based on the experimental stabilized
cyclic tension-compression tests performed at 20^{\circ}C and 300^{\circ}C. A
good agreement was obtained between numerical stabilized traction-compression
cycle curves (with and without pre-straining) and experimental ones. This 3
dimensional simulation gave access to the evolution of the axial and tangential
internal stresses and local strains during the tests. Numerical results showed:
a decreasing of the tangential stress and stabilization after 40 cycles,
whereas the axial stress showed weaker decreasing with the number of cycles.
The results also pointed out a ratcheting and a slightly non proportional
loading at the inner surface. The computed mean stress and strain values of the
stabilized cycle being far from the initial ones, they could be used to get the
safety margins of standard design related to fatigue, as well as to get
accurate loading conditions needed for the use of more advanced fatigue
analysis and criteria
Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model
Low cycle fatigue tests were carried out for a 304 stainless steel at room temperature. A series of experimental characterisations, including SEM, TEM, and XRD were conducted for the 304 stainless steel to facilitate the understanding of the mechanical responses and microstructural behaviour of the material under cyclic loading including nanostructure, crystal structure and the fractured surface. The crystal plasticity finite element method (CPFEM) is a powerful tool for studying the microstructure influence on the cyclic plasticity behaviour. This method was incorporated into the commercially available software ABAQUS by coding a UMAT user subroutine. Based on the results of fatigue tests and material characterisation, the full set of material constants for the crystal plasticity model was determined. The CPFEM framework used in this paper can be used to predict the crack initiation sites based on the local accumulated plastic deformation and local plastic dissipation energy criterion, but with limitation in predicting the crack initiation caused by precipitates
Fatigue thermique d'un acier inoxydable austénitique : influence de l'état de surface par une approche multi-échelles
Some cases of cracking of 304L austenitic stainless steel components due to thermal fatigue were encountered in particular on the Residual Heat Removal Circuits (RHR) of the Pressurized Water Reactor (PWR). EDF has initiated a R&D program to understand assess the risks of damage on nuclear plant mixing zones. The INTHERPOL test developed at EDF is designed in order to perform pure thermal fatigue test on tubular specimen under monofrequential thermal load. These tests are carried out under various loadings, surface finish qualities and welding in order to give an account of these parameters on crack initiation. The main topic of this study is the research of a fatigue criterion using a micro:macro modelling approach. The first part of work deals with material characterization (stainless steel 304L) emphasing the specificities of the surface roughness link with a strong hardening gradient. The first results of the characterization on the surface show a strong work-hardening gradient on a 250 microns layer. This gradient does not evolved after thermal cycling. Micro hardness measurements and TEM observations were intensively used to characterize this gradient. The second part is the macroscopic modelling of INTHERPOL tests in order to determine the components of the stress and strain tensors due to thermal cycling. The third part of work is thus to evaluate the effect of surface roughness and hardening gradient using a calculation on a finer scale. This simulation is based on the variation of dislocation density. A goal for the future is the detemination of the fatigu criterion mainly based on polycrystalline modelling. Stocked energy or critical plane being available that allows making a sound choice for the criteria.Quelques cas de fissurations de composants en acier inoxydable austénitique 304L dus à un phénomène de fatigue thermique ont été recensés, en particulier sur les circuits de Refroidissement du Réacteur à l'Arrêt (RRA) des Réacteurs à Eau Pressurisée (REP). EDF a lancé un programme de R&D afin de comprendre et d'évaluer les risques de dommages dans ces circuits. Le test développé à EDF, INTHERPOL, est un essai de fatigue thermique de type structure sur maquette tubulaire et soumis à un chargement périodique. Ces essais sont réalisés sous différents niveaux de chargement, états de surface et soudures afin de rendre compte de ces paramètres sur l'amorçage des fissures. L'objectif de cette étude est de définir une méthodologie permettant la justification d'un critère de fatigue tenant compte de l'influence de l'état de surface, à l'aide d'une approche multi-échelle. La première partie du travail consiste à caractériser le matériau (304L) et particulièrement sa surface. Les premiers résultats de la caractérisation de la surface montrent un fort gradient d'écrouissage initial du matériau sur 250 microns en profondeur. Ce gradient n'évolue pas avec le cyclage thermique. Pour cette caractérisation, des mesures de microduretéet des observations de la microstructure (MET) ont été réalisées. La deuxième partie est la modélisation macroscopique des essais INTHERPOL permettant de déterminer les champs de contrainte et déformation issus des cycles thermiques. La troisième partie du travail consiste ensuite à évaluer l'effet de la rugosité de surface et du gradient d'écrouissage à échelle plus fine à l'aide d'une modélisation à l'échelle du polycristal, basée sur la variation des densités de dislocations. Un objectif pour l'avenir est d'aider, par ces modélisations polycristallines, au choix de critères de fatigue prenant en compte l'influence de l'état de surface (critères énergétiques ou de types plan critique par exemple)
Polycrystal modelling of fatigue: pre-hardening and surface roughness effects on damage initiation for 304L stainless steel
International audienceThe 304L stainless steel is a major component of residual heat removal circuits of pressurized water reactors (PWR).The main purpose of this study is to understand the risk of thermal fatigue damage resulting from the machining of the 304L steel pipes inner surface (pre-hardening gradient, residual stresses and scratches), at the scale of the microstructure. This work is based on previous results obtained for pipe specimens thanks to a macroscopic elasto-visco-plastic model. Applied to the pipe specimens, this modelling showed that a thermal loading with temperature gradient, induced a cyclic non linear biaxial loading at the inner surface of the pipe. In this paper, a polycrystal plasticity model, implemented in a Finite Element (FE) code, is adapted to cyclic loading. An elementary volume (3D aggregate), representing the inner surface and sub-surface of the 304L steel tube, is built from successive polishings and orientation mappings thanks to an Electron Back Scattering Diffraction method. At the grain scale, the polycrystal model is used as a "numerical microscope" to compute the local mechanical fields. Different fatigue criteria are tested to determine their sensitivity to surface properties (roughness, residual stress and pre-hardening) and to the microstructure of the material (crystallographic orientation and grain size). Pre-hardening leads to a lower and more homogeneous distribution of local strain amplitudes in the aggregate, but slightly higher stresses when compared to initial material without hardening. By contrast, surface roughness leads to large localized strain and stress fields in grains located at the bottom of scratches. To determine the surface micro-structural "hot spots" features and to test the sensitivity of different surface conditions, three different fatigue criteria (Manson-Coffin, Fatemi-Socie and Dissipated Energy criteria) have been computed. We point out that the pre-hardening may have a complex effect on fatigue resistance, since it reduces local plastic strain amplitudes, but increases local stresses. Moreover, the pre-hardening has a positive effect on fatigue since it delays damage initiation. By contrast, the surface roughness leads to a negative effect. However, we have shown that the three different fatigue criteria do not deliver similar quantitative predictions. Relevant criteria for high cycle fatigue, such as stress based criteria, are not considered in this paper, since the thermal loading used for computation is large enough to reduce cyclic plastic strain straining within all grains of 304L pipe inner surface for midlife of experiments
Lipoprotein lipase inhibits hepatitis C virus (HCV) infection by blocking virus cell entry.
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches