324 research outputs found

    Serum Markers of Hepatocyte Death and Apoptosis Are Non Invasive Biomarkers of Severe Fibrosis in Patients with Alcoholic Liver Disease

    Get PDF
    BACKGROUND: Quantification of hepatocyte death is useful to evaluate the progression of alcoholic liver diseases. Our aims were to quantify and correlate the circulating levels of Cytokeratin 18 (CK18) and its caspases-generated fragment to disease severity in heavy alcoholics. METHODOLOGY/PRINCIPAL FINDINGS: CK18 and CK18-fragment were evaluated in the serum of 143 heavy alcoholics. Serum levels of markers of hepatocyte death (CK18), apoptosis (CK18 fragment) and necrosis (CK18 -CK18 fragment) increased in patients with severe fibrosis compared to patients with mild fibrosis. These markers strongly correlated with Mallory-Denk bodies, hepatocyte ballooning, fibrosis and with hepatic TNFα and TGFβ assessed in the liver of 24 patients. Elevated levels of serum hepatocyte death and apoptotic markers were independent risk factors in predicting severe fibrosis in a model combining alkaline phosphatase, bilirubin, prothrombin index, hyaluronate, hepatocyte death and apoptotic markers. The level of markers of hepatocyte death and apoptosis had an area under the receiving operator curve that predicted severe fibrosis of 0.84 and 0.76, respectively. CONCLUSION/SIGNIFICANCE: Death of hepatocytes can be easily evaluated with serum markers and correlated with severe fibrosis in heavy alcohol drinkers. These biomarkers could be useful to rapidly evaluate liver injuries and the efficacy of therapies

    Tpl2 Kinase Is Upregulated in Adipose Tissue in Obesity and May Mediate Interleukin-1β and Tumor Necrosis Factor-α Effects on Extracellular Signal–Regulated Kinase Activation and Lipolysis

    Get PDF
    International audienceOBJECTIVE Activation of extracellular signal–regulated kinase-(ERK)-1/2 by cytokines in adipocytes is involved in the alterations of adipose tissue functions participating in insulin resistance. This study aims at identifying proteins regulating ERK1/2 activity, specifically in response to inflammatory cytokines, to provide new insights into mechanisms leading to abnormal adipose tissue function. RESEARCH DESIGN AND METHODS Kinase activities were inhibited with pharmacological inhibitors or siRNA. Lipolysis was monitored through glycerol production. Gene expression in adipocytes and adipose tissue of obese mice and subjects was measured by real-time PCR. RESULTS IκB kinase-(IKK)-β inhibition prevented mitogen-activated protein (MAP) kinase kinase (MEK)/ERK1/2 activation in response to interleukin (IL)-1β and tumor necrosis factor (TNF)-α but not insulin in 3T3-L1 and human adipocytes, suggesting that IKKβ regulated a MAP kinase kinase kinase (MAP3K) involved in ERK1/2 activation induced by inflammatory cytokines. We show that the MAP3K8 called Tpl2 was expressed in adipocytes and that IL-1β and TNF-α activated Tpl2 and regulated its expression through an IKKβ pathway. Pharmacological inhibition or silencing of Tpl2 prevented MEK/ERK1/2 activation by these cytokines but not by insulin, demonstrating its involvement in ERK1/2 activation specifically in response to inflammatory stimuli. Importantly, Tpl2 was implicated in cytokine-induced lipolysis and in insulin receptor substrate-1 serine phosphorylation. Tpl2 mRNA expression was upregulated in adipose tissue of obese mice and patients and correlated with TNF-α expression. CONCLUSIONS Tpl2 is selectively involved in inflammatory cytokine–induced ERK1/2 activation in adipocytes and is implicated in their deleterious effects on adipocyte functions. The deregulated expression of Tpl2 in adipose tissue suggests that Tpl2 may be a new actor in adipose tissue dysfunction in obesity

    Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis

    Get PDF
    BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-). PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorder

    Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes

    Get PDF
    Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in beta-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes. (C) 2015 Elsevier Ltd. All rights reserved

    Rapamycin doses sufficient to extend lifespan do not compromise muscle mitochondrial content or endurance

    Get PDF
    Rapamycin extends lifespan in mice, but can have a number of undesirable effects that may ultimately limit its utility in humans. The canonical target of rapamycin, and the one thought to account for its effects on lifespan, is the mammalian/mechanistic target of rapamycin, complex 1 (mTORC1). We have previously shown that at least some of the detrimental side effects of rapamycin are due to “off target” disruption of mTORC2, suggesting they could be avoided by more specific targeting of mTORC1. However, mTORC1 inhibition per se can reduce the mRNA expression of mitochondrial genes and compromise the function of mitochondria in cultured muscle cells, implying that defects in bioenergetics might be an unavoidable consequence of targeting mTORC1 in vivo. Therefore, we tested whether rapamycin, at the same doses used to extend lifespan, affects mitochondrial function in skeletal muscle. While mitochondrial transcripts were decreased, particularly in the highly oxidative soleus muscle, we found no consistent change in mitochondrial DNA or protein levels. In agreement with the lack of change in mitochondrial components, rapamycin‐treated mice had endurance equivalent to that of untreated controls, and isolated, permeabilized muscle fibers displayed similar rates of oxygen consumption. We conclude that the doses of rapamycin required to extend life do not cause overt mitochondrial dysfunction in skeletal muscle.National Institutes of Health (U.S.) (National Institute on Aging K99/R00 Award AG041765

    Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy

    Full text link
    Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent
    corecore