140 research outputs found

    Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites

    Get PDF
    RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage. These proteins act as positive regulators of the signaling cascade that initiates at DNA lesions. Inactivation of these enzymes is sufficient to severely impair the ability of cells to respond to DNA damage. Given their central role in the pathway, several layers of regulation act at this nodal signaling point. Here we will summarize current knowledge on the roles of RNF8 and RNF168 in maintaining genome integrity with particular emphasis on recent insights into the multiple layers of regulation that act on these enzymes to fine-tune the cellular response to DNA lesions

    La farmacologia dei disordini autoimmuni in gravidanza

    Get PDF
    L'obiettivo del presente lavoro consiste nell'analisi delle malattie autoimmuni durante la gestazione, con particolare riguardo all'influenza di quest'ultime sull'esito fetale. In risposta a queste problematiche sono state analizzate le categorie di farmaci idonee per l'impiego nel trattamento preventivo delle riacutizzazioni delle suddette patologie durante la gravidanza e l'allattamento

    Naturally death-resistant precursor cells revealed as the origin of retinoblastoma

    Get PDF
    AbstractThe molecular mechanisms and the cell-of-origin leading to retinoblastoma are not well defined. In this issue of Cancer Cell, Bremner and colleagues describe the first inheritable model of retinoblastoma, revealing that loss of the pocket proteins pRb and p107 deregulates cell cycle exit in retinal precursors. The authors show that a subset of these precursors contain an inherent resistance to apoptosis, and that while most terminally differentiate, some are likely to acquire additional mutations, leading to tumor formation. Thus, this work defines the cell-of-origin of retinoblastoma and suggests that mutations giving increased proliferative capacity are required for retinoblastoma development

    Isolation of chromatin from dysfunctional telomeres reveals an important role for Ring1b in NHEJ-mediated chromosome fusions

    Get PDF
    When telomeres become critically short, DNA damage response factors are recruited at chromosome ends, initiating a cellular response to DNA damage. We performed proteomic isolation of chromatin fragments (PICh) in order to define changes in chromatin composition that occur upon onset of acute telomere dysfunction triggered by depletion of the telomere-associated factor TRF2. This unbiased purification of telomere-associated proteins in functional or dysfunctional conditions revealed the dynamic changes in chromatin composition that take place at telomeres upon DNA damage induction. On the basis of our results, we describe a critical role for the polycomb group protein Ring1b in nonhomologous end-joining (NHEJ)-mediated end-to-end chromosome fusions. We show that cells with reduced levels of Ring1b have a reduced ability to repair uncapped telomeric chromatin. Our data represent an unbiased isolation of chromatin undergoing DNA damage and are a valuable resource to map the changes in chromatin composition in response to DNA damage activation

    A siRNA-Based Screen for Genes Involved in Chromosome End Protection

    Get PDF
    Telomeres are nucleoprotein complexes which protect the ends of linear chromosomes from detection as DNA damage and provide a sequence buffer against replication-associated shortening. In mammals, telomeres consist of repetitive DNA sequence (TTAGGG) and associated proteins. The telomeric core complex is called shelterin and is comprised of the proteins TRF1, TRF2, POT1, TIN2, TPP1 and RAP1. Excessive telomere shortening or de-protection of telomeres through the loss of shelterin subunits allows the detection of telomeres as DNA damage, which can be visualized as DNA damage protein foci at chromosome ends called TIF (Telomere Dysfunction-Induced Foci). We sought to exploit the TIF phenotype as marker for telomere dysfunction to identify novel genes involved in telomere protection by siRNA-mediated knock-down of a set of 386 candidates. Here we report the establishment, specificity and feasibility of such a screen and the results of the genes tested. Only one of the candidate genes showed a unique TIF phenotype comparable to the suppression of the main shelterin components TRF2 or TRF1 and that gene was identified as a TRF1-like pseudogene. We also identified a weak TIF phenotype for SKIIP (SNW1), a splicing factor and transcriptional co-activator. However, the knock-down of SKIIP also induced a general, not telomere-specific DNA damage response, which complicates conclusions about a telomeric role. In summary, this report is a technical demonstration of the feasibility of a cell-based screen for telomere deprotection with the potential of scaling it to a high-throughput approach

    Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells

    Get PDF
    Micro RNAs (miRNAs) are non-coding small RNAs and constitute a novel class of negative gene regulators that are found in both plants and animals. Several miRNAs play crucial roles in cancer cell growth. To identify miRNAs specifically deregulated in anaplastic thyroid cancer (ATC) cells, we performed a comprehensive analysis of miRNA expressions in ARO cells and primary thyrocytes using miRNA microarrays. MiRNAs in a miR-17-92 cluster were overexpressed in ARO cells. We confirmed the overexpression of those miRNAs by Northern blot analysis in ARO and FRO cells. In 3 of 6 clinical ATC samples, miR-17-3p and miR-17-5p were robustly overexpressed in cancer lesions compared to adjacent normal tissue. To investigate the functional role of these miRNAs in ATC cells, ARO and FRO cells were transfected with miRNA inhibitors, antisense oligonucleotides containing locked nucleic acids. Suppression of miR-17-3p caused complete growth arrest, presumably due to caspase activation resulting in apoptosis. MiR-17-5p or miR-19a inhibitor also induced strong growth reduction, but only miR-17-5p inhibitor led to cellular senescence. On the other hand, miR-18a inhibitor only moderately attenuated the cell growth. Thus, we have clarified functional differences among the members of the cluster in ATC cells. In conclusion, these findings suggest that the miR-17-92 cluster plays an important role in certain types of ATCs and could be a novel target for ATC treatment

    53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility

    Get PDF
    Double-strand breaks activate the ataxia telangiectasia mutated (ATM) kinase, which promotes the accumulation of DNA damage factors in the chromatin surrounding the break. The functional significance of the resulting DNA damage foci is poorly understood. Here we show that 53BP1 (also known as TRP53BP1), a component of DNA damage foci, changes the dynamic behaviour of chromatin to promote DNA repair. We used conditional deletion of the shelterin component TRF2 (also known as TERF2) from mouse cells (TRF2fl/-) to deprotect telomeres, which, like double-strand breaks, activate the ATM kinase, accumulate 53BP1 and are processed by non-homologous end joining (NHEJ). Deletion of TRF2 from 53BP1-deficient cells established that NHEJ of dysfunctional telomeres is strongly dependent on the binding of 53BP1 to damaged chromosome ends. To address the mechanism by which 53BP1 promotes NHEJ, we used time-lapse microscopy to measure telomere dynamics before and after their deprotection. Imaging showed that deprotected telomeres are more mobile and sample larger territories within the nucleus. This change in chromatin dynamics was dependent on 53BP1 and ATM but did not require a functional NHEJ pathway. We propose that the binding of 53BP1 near DNA breaks changes the dynamic behaviour of the local chromatin, thereby facilitating NHEJ repair reactions that involve distant sites, including joining of dysfunctional telomeres and AID (also known as AICDA)-induced breaks in immunoglobulin class-switch recombination

    Cellular senescence and chromatin organisation

    Get PDF
    Despite the potential importance of senescence in tumour suppression, its effector mechanism is poorly understood. Recent studies suggest that alterations in the chromatin environment might add an additional layer of stability to the phenotype. In this review, recent discoveries on the interplay between senescence and chromatin biology are overviewed
    • …
    corecore