16 research outputs found

    Familial phenotype differences in PKD1111See Editorial, p. 344.

    Get PDF
    Familial phenotype differences in PKD1.BackgroundMutations within the PKD1 gene are responsible for the most common and most severe form of autosomal dominant polycystic kidney disease (ADPKD). Although it is known that there is a wide range of disease severity within PKD1 families, it is uncertain whether differences in clinical severity also occur among PKD1 families.MethodsTen large South Wales ADPKD families with at least 12 affected members were included in the study. From affected members, clinical information was obtained, including survival data and the presence of ADPKD-associated complications. Family members who were at risk of having inherited ADPKD but were proven to be non-affected were included as controls. Linkage and haplotype analysis were performed with highly polymorphic microsatellite markers closely linked to the PKD1 gene. Survival data were analyzed by the Kaplan–Meier method and the log rank test. Logistic regression analysis was used to test for differences in complication rates between families.ResultsHaplotype analysis revealed that each family had PKD1-linked disease with a unique disease-associated haplotype. Interfamily differences were observed in overall survival (P = 0.0004), renal survival (P = 0.0001), hypertension prevalence (P = 0.013), and hernia (P = 0.048). Individuals with hypertension had significantly worse overall (P = 0.0085) and renal (P = 0.03) survival compared with those without hypertension. No statistically significant differences in the prevalence of hypertension and hernia were observed among controls.ConclusionWe conclude that phenotype differences exist between PKD1 families, which, on the basis of having unique disease-associated haplotypes, are likely to be associated with a heterogeneous range of underlying PKD1 mutations

    Characterization of 34 novel and six known MTM1 gene mutations in 47 unrelated X-linked myotubular myopathy patients

    No full text
    X-linked myotubular myopathy (XLMTM) is a congenital muscle disorder mainly affecting newborn males. Neonatal muscle weakness and hypotonia usually leads to a rapid demise. The responsible gene, MTM1, was isolated in 1996, and mutational data derived from 90 patients have been published. We report on our findings in a further 53 patients, using genomic DNA and mRNA screening protocols. Thirty-four novel mutations were identified in 37 cases, and six known mutations found in 10 other patients. The 34 new mutations include five large deletions, eight nonsense, six frameshift, five missense, and eight splice-site mutations, whereas two intronic variants causing partial exon skipping represent the first report on such a mechanism in MTM1. Two deletions, one involving exon 1, and the second exon 15, are the first defects to be identified in these exons. The heterogeneity of the mutations, their mutational origins, and the varied ethnic backgrounds of the patients, indicate that the majority of XLMTM families are affected by unique MTM1 mutations

    Immunohistological evidence for second or somatic mutations as the underlying cause of dystrophin expression by isolated fibres in Xp21 muscular dystrophy of Duchenne-type severity

    No full text
    Using five monoclonal antibodies against different parts of the dystrophin molecule, we have studied the dystrophin composition of 17 dystrophin-positive fibres in a muscle biopsy from a boy with Xp21 muscular dystrophy of Duchenne-type severity. The fibres showed five distinct, reproducible, immunoreactive dystrophin profiles. All the profiles included both the N-terminal and the C-terminal domains, but between these domains, different fibres were negative for different antibodies, suggesting the somatic loss of certain exons. We interpret this as the first in situ evidence of an individual having different patterns of missing exons leading to restoration of the reading frame in various ways in the original germline frame-shifting deletion of exons 35–43. It follows that various somatic mutations had taken place in different fibres

    An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5′ untranslated region of the PAFAH1B1 (LIS1) gene

    No full text
    A 130 base pair (bp) insertion (g.-8delCins130) into the 5′ untranslated region of the PAFAH1B1 (LIS1) gene, seven nucleotides upstream of the translational initiation site, was detected in an isolated case of lissencephaly. The inserted DNA sequence exhibited perfect homology to two non-contiguous regions of the mitochondrial genome (8479 to 8545 and 8775 to 8835, containing portions of two genes, ATP8 and ATP6 ), as well as near-perfect homology (1 bp mismatch) to a nuclear mitochondrial pseudogene (NUMT) sequence located on chromosome 1p36. This lesion was not evident on polymerase chain reaction (PCR) sequence analysis of either parent, indicating that the mutation had occurred de novo in the patient. Experiments designed to distinguish between a mitochondrial and a nuclear genomic origin for the inserted DNA sequence were, however, inconclusive. Mitochondrial genome sequences from both the patient and his parents were sequenced and found to be identical to the sequence inserted into the PAFAH1B1 gene. Analysis of parental PCR products from the chromosome 1-specific NUMT were also consistent with the interpretation that the inserted sequence had originated directly from the mitochondrial genome. The chromosome 1-specific NUMT in the patient proved to be refractory to PCR analysis, however, suggesting that this region of chromosome 1 could have been deleted or rearranged. Although it remains by far the most likely scenario, in the absence of DNA sequence information from the patient's own chromosome 1-specific NUMT, we cannot unequivocally confirm that the 130 bp insertion originated from mitochondrial genome rather than from the NUMT

    An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the <it>PAFAH1B1 </it>(LIS1) gene

    No full text
    Abstract A 130 base pair (bp) insertion (g.-8delCins130) into the 5' untranslated region of the PAFAH1B1 (LIS1) gene, seven nucleotides upstream of the translational initiation site, was detected in an isolated case of lissencephaly. The inserted DNA sequence exhibited perfect homology to two non-contiguous regions of the mitochondrial genome (8479 to 8545 and 8775 to 8835, containing portions of two genes, ATP8 and ATP6), as well as near-perfect homology (1 bp mismatch) to a nuclear mitochondrial pseudogene (NUMT) sequence located on chromosome 1p36. This lesion was not evident on polymerase chain reaction (PCR) sequence analysis of either parent, indicating that the mutation had occurred de novo in the patient. Experiments designed to distinguish between a mitochondrial and a nuclear genomic origin for the inserted DNA sequence were, however, inconclusive. Mitochondrial genome sequences from both the patient and his parents were sequenced and found to be identical to the sequence inserted into the PAFAH1B1 gene. Analysis of parental PCR products from the chromosome 1-specific NUMT were also consistent with the interpretation that the inserted sequence had originated directly from the mitochondrial genome. The chromosome 1-specific NUMT in the patient proved to be refractory to PCR analysis, however, suggesting that this region of chromosome 1 could have been deleted or rearranged. Although it remains by far the most likely scenario, in the absence of DNA sequence information from the patient's own chromosome 1-specific NUMT, we cannot unequivocally confirm that the 130 bp insertion originated from mitochondrial genome rather than from the NUMT.</p

    Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease

    No full text
    The molecular analysis of a specific CAG repeat sequence in the Huntington's disease gene in 440 Huntington's disease patients and 360 normal controls reveals a range of 30−70 repeats in affected individuals and 9−34 in normals. We find significant negative correlations between the number of repeats on the HD chromosome and age at onset, regardless of sex of the transmitting parent, and between the number of repeats on the normal paternal allele and age at onset in individuals with maternally transmitted disease. This effect of the normal paternal allele may account for the weaker age at onset correlation between affected sib pairs with disease of maternal as opposed to paternal origin and suggests that normal gene function varies because of the size of the repeat in the normal range and a sex−specific modifying effect
    corecore