356 research outputs found

    Optimal Resource Allocation for Markovian Queueing Networks: The Complete Information Case

    Get PDF
    The problem of finding the optimal routing and flow control of a single-class Markovian network under a suitable optimization criterion is analyzed. It is proven that, if complete information about the state of the network is made available to the network controller, the optimal state dependent routing is essentially deterministic, and the optimal flow control is of a generalized window type. An iterative linear programming algorithm is given for the derivation of the optimal routing and flow control policy

    Load Balancing Algorithms for Jacksonian Networks with Acknowledgement Delays

    Get PDF
    Load balancing algorithms for Jacksonian networks are derived. The state of the network is represented by the total number of packets for which the source has not yet received an acknowledgement, The networks studied are subject to the state independent routing and, state dependent and state independent flow control. The objective is to maximize the throughput of the network so that the end-to-end expected packet time delay does not exceed an upper bound. The optimal flow control is shown to be a window type, while the routing policy balances the traffic inside the network. Several load balancing algorithms are evaluated

    Decentralized Network Flow Control

    Get PDF
    In this paper, the problem of finding the decentralized flow control of a BCMP network is investigated. The packets of each of the users correspond to different classes of customers. The servers in the network are exponential and serve packets with FIFO policy. Each network user operates with either a state-dependent arrival rate (i.e. an arrival rate which depends upon the number of the user\u27s packets that have not yet been acknowledged) or a state-dependent arrival rate (which the user chooses). The decentralized flow control problem is formulated udder two optimization criteria. Under the first optimization criterion, the decentralized flow control corresponding to each of the network users maximizes the throughput of the network, under the constraint that the expected time delay of the packets in the network does not exceed a preassigned upper bound. Under the second optimization criterion, the decentralized flow control corresponding to each of the network users maximizes the throughput of the network, under the constraint that the expected time delay of each particular class of packets does not exceed a preassigned (user dependent) upper bound. In this paper all the previous classes of problems are handled uniformly, using efficient nonlinear optimization techniques

    The Effect of Delayed Feedback Information on Network Performance

    Get PDF
    The performance of a network subject to either state dependent or state independent flow control is investigated. In the state dependent case, the flow control policy is a function of the total number of packets for which the controller has not yet received an acknowledgement. In this case it is shown that the optimal flow control is a sliding window mechanism. The effect of the delayed feedback on the network performance as well as the size of the window are studied. The state independent optimal rate is also derived. The performance of the state dependent and state independent flow control policies are compared. Conditions for employing one of the two types of flow control policies for superior end-to-end network performance are discussed. All the results obtained are demonstrated using simple examples

    Asynchronous Algorithms for Optimal Flow Control of BCMP Networks

    Get PDF
    The decentralized flow control problem for an open multiclass BCMP network is studied. The power based optimization criterion is employed for the derivation of the optimal flow control for each of the network\u27s users. It is shown that that optimal arrival rates correspond to the unique Nash equilibrium point of a noncooperative game problem. Asynchronous algorithms are presented for the computation of the Nash equilibrium point of the network. Among them, the nonlinear Gauss-Seidel algorithms is distinguished for its robustness and speed of convergence

    Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction

    Get PDF
    Marine and estuary sediments contain a variety of uncultured archaea whose metabolic and ecological roles are unknown. De novo assembly and binning of high-throughput metagenomic sequences from the sulfate–methane transition zone in estuary sediments resulted in the reconstruction of three partial to near-complete (2.4–3.9 Mb) genomes belonging to a previously unrecognized archaeal group. Phylogenetic analyses of ribosomal RNA genes and ribosomal proteins revealed that this group is distinct from any previously characterized archaea. For this group, found in the White Oak River estuary, and previously registered in sedimentary samples, we propose the name ‘Thorarchaeota'. The Thorarchaeota appear to be capable of acetate production from the degradation of proteins. Interestingly, they also have elemental sulfur and thiosulfate reduction genes suggesting they have an important role in intermediate sulfur cycling. The reconstruction of these genomes from a deeply branched, widespread group expands our understanding of sediment biogeochemistry and the evolutionary history of Archaea

    Equatorial upper-ocean dynamics and their interaction with the West African monsoon

    Get PDF
    Zonal wind anomalies in the western equatorial Atlantic during late boreal winter to early summer precondition boreal summer cold/warm events in the eastern equatorial Atlantic (EEA) that manifest in a strong interannual Atlantic cold tongue (ACT) variability. Local intraseasonal wind fluctuations, linked to the St. Helena anticyclone, contribute to the variability of cold tongue onset and strength, particularly during years with preconditioned shallow thermoclines. The impact of cold tongue sea surface temperature (SST) anomalies on the wind field in the Gulf of Guinea is assessed. It contributes to the northward migration of humidity and convection and possibly the West African monsoon (WAM) jump. Copyright @ 2010 Royal Meteorological Societ

    Metabolite and transcriptome analysis during fasting suggest a role for the p53-Ddit4 axis in major metabolic tissues

    Get PDF
    BACKGROUND: Fasting induces specific molecular and metabolic adaptions in most organisms. In biomedical research fasting is used in metabolic studies to synchronize nutritional states of study subjects. Because there is a lack of standardization for this procedure, we need a deeper understanding of the dynamics and the molecular mechanisms in fasting. RESULTS: We investigated the dynamic changes of liver gene expression and serum parameters of mice at several time points during a 48 hour fasting experiment and then focused on the global gene expression changes in epididymal white adipose tissue (WAT) as well as on pathways common to WAT, liver, and skeletal muscle. This approach produced several intriguing insights: (i) rather than a sequential activation of biochemical pathways in fasted liver, as current knowledge dictates, our data indicates a concerted parallel response; (ii) this first characterization of the transcriptome signature of WAT of fasted mice reveals a remarkable activation of components of the transcription apparatus; (iii) most importantly, our bioinformatic analyses indicate p53 as central node in the regulation of fasting in major metabolic tissues; and (iv) forced expression of Ddit4, a fasting-regulated p53 target gene, is sufficient to augment lipolysis in cultured adipocytes. CONCLUSIONS: In summary, this combination of focused and global profiling approaches provides a comprehensive molecular characterization of the processes operating during fasting in mice and suggests a role for p53, and its downstream target Ddit4, as novel components in the transcriptional response to food deprivation
    corecore