134 research outputs found
First year Physics labs in a 'suitcase'
Over the past two decades university student demographics have considerably changed. A larger percentage of the population that now attend university come from a variety of teaching and learning cultures and a wide range of socio-economic backgrounds. Under these challenging circumstances, most of the students seem to juggle their time between work, study and family commitments to complete their degree. A survey conducted by Curtin Applied Physics in October 2000 revealed that 58% of the full time students studying physics for their first time work either part time or full time and therefore are time disadvantaged as compared to their full time non-working colleagues. In order to address these issues Physics113/114/115 units were restructured into modular format providing flexible assessment using WebCT. These units have been running for the past three years. Over these years we have found that the flexible module assessment is working well to the satisfaction of the students, but some of the students are still finding it difficult to budget their time to attend laboratories to complete the unit. The laboratory program is an essential part of these units and is thus heavily weighted and requires a considerable time input by the students. At the time when these units were modularised, flexible laboratory program could not be provided due to lack of equipment, funding and staff time constraints
Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4
During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked “racetrack patterns” in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow
ClassifyMe: A Field-Scouting Software for the Identification of Wildlife in Camera Trap Images
We present ClassifyMe a software tool for the automated identification of animal species from camera trap images. ClassifyMe is intended to be used by ecologists both in the field and in the office. Users can download a pre-trained model specific to their location of interest and then upload the images from a camera trap to a laptop or workstation. ClassifyMe will identify animals and other objects (e.g., vehicles) in images, provide a report file with the most likely species detections, and automatically sort the images into sub-folders corresponding to these species categories. False Triggers (no visible object present) will also be filtered and sorted. Importantly, the ClassifyMe software operates on the user's local machine (own laptop or workstation) - not via internet connection. This allows users access to state-of-the-art camera trap computer vision software in situ, rather than only in the office. The software also incurs minimal cost on the end-user as there is no need for expensive data uploads to cloud services. Furthermore, processing the images locally on the users' end-device allows them data control and resolves privacy issues surrounding transfer and third-party access to users' datasets
Computational tools and workflows in metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy
This work was completed through funding provided by the BBSRC [BB/L005077/1 and BB/M019985/1] and Wellcome Trust [202952/Z/16/Z]
Endothelial Cells Obtained from Patients Affected by Chronic Venous Disease Exhibit a Pro-Inflammatory Phenotype
The inflammatory properties of vein endothelium in relation to chronic venous disease (CVD) have been poorly investigated. Therefore, new insights on the characteristics of large vein endothelium would increase our knowledge of large vessel physiopathology.
METHODOLOGY/PRINCIPAL FINDINGS:
Surgical specimens of veins were obtained from the tertiary venous network (R3) and/or saphenous vein (SF) of patients affected by CVD and from control individuals. Highly purified venous endothelial cell (VEC) cultures obtained from CVD patients were characterized for morphological, phenotypic and functional properties compared to control VEC. An increase of CD31/PECAM-1, CD146 and ICAM-1 surface levels was documented at flow cytometry in pathological VEC with respect to normal controls. Of note, the strongest expression of these pro-inflammatory markers was observed in VEC obtained from patients with more advanced disease. Similarly, spontaneous cell proliferation and resistance to starvation was higher in pathological than in normal VEC, while the migratory response of VEC showed an opposite trend, being significantly lower in VEC obtained from pathological specimens. In addition, in keeping with a higher baseline transcriptional activity of NF-kB, the release of the pro-inflammatory cytokines osteoprotegerin (OPG) and vascular endothelial growth factor (VEGF) was higher in pathological VEC cultures with respect to control VEC. Interestingly, there was a systemic correlation to these in vitro data, as demonstrated by higher serum OPG and VEGF levels in CVD patients with respect to normal healthy controls.
CONCLUSION/SIGNIFICANCE:
Taken together, these data indicate that large vein endothelial cells obtained from CVD patients exhibit a pro-inflammatory phenotype, which might significantly contribute to systemic inflammation in CVD patients
Towards Design Thinking as a Management Practice: A Learning Experiment in Teaching Innovation
There is an increasing need to make management knowledge more consistent with the “messiness” and complexity of actual organizational phenomena and contexts in today’s world, calling for a refoundation of mainstream management theories. The paper focuses on the contribution of design thinking approaches in this sense, particularly addressing the question of how the predisposition for a design thinking approach can be shaped in management education. Following a qualitative inductive research design, it will report the experience of the introduction of new teaching practices inspired by design thinking in a class of students from a Master program on Innovation and Marketing in an Italian University. Based on the empirical findings, the challenges and opportunities of innovating business school teaching towards the construction of a design thinking mentality will be discussed
Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas
The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations
The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling
We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors
- …