25 research outputs found

    Cruise Report C-203 : Scientific data collected aboard SSV Corwith Cramer, Key West – Roatan, Honduras – Key West, 8 February 2006 – 18 March 2006

    Get PDF
    Key West – Roatan, Honduras – Key West, 8 February 2006 – 18 March 2006This cruise report provides a record of data collected aboard the SSV Corwith Cramer during cruise C-203 (U.S. State Department Cruise 2005-096), which departed from Key West, FL on 8 February 2006 and transited through the Florida Straits, the Sargasso Sea, and the Caribbean Sea before returning to Key West on 18 March 2006 (Figure 1). During the six week voyage we collected samples or data at 84 discrete oceanographic stations (Table 1), surface samples at 110 locations (Table 2), and we continuously sampled water depth and sub-bottom profiles (CHIRP system), upper ocean currents (Acoustic Doppler Current Profiler, or ADCP), and sea surface temperature, salinity and in vivo fluorescence (seawater flow-through system). This report summarizes sea surface chemical and biological characteristics (Tables 2 and 3), chemical properties with depth (Table 4), and surface sediment properties (Table 5). Lengthy CTD, CHIRP, ADCP, and flow-through data are not reported here. All unpublished data can be made available by arrangement with the Sea Education Association (SEA) data archivist (contact information, p. 2). The information in this report is not intended to represent final interpretation of the data and should not be excerpted or cited without written permission from SEA. As part of SEA’s educational program, students conduct oceanographic research at sea for studies they have designed prior to the cruise. Student projects span the four major disciplines of oceanography – physical, chemical, biological, and geological oceanography (Table 6). Student research efforts culminate in a written paper and an oral presentation to the ship’s company. The student research papers from cruise C-203 are available upon request from SEA.NS

    Production, use, and fate of all plastics ever made

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1700782, doi:10.1126/sciadv.1700782.Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.R.G. was supported by the NSF Chemical, Bioengineering, Environmental and Transport Systems grant #1335478

    Plastic Marine Pollution in the Gulf of Maine

    Get PDF
    Plastic pollution is a leading environmental issue because of its demonstrated and potential harms to wildlife, as well as to ecosystem and human health. The Gulf of Maine has already suffered ecological shifts due to recent unprecedented warming of ocean waters, with consequences to coastal economies that rely on ecosystem services. Here, we explore the prevalence of plastic pollution as a potential compounding threat to Gulf of Maine ecosystems by analyzing microplastics and plastic debris collected in surface-towed plankton nets since 1987. Although we find low concentrations of small floating plastic particles, 20 years of coastal and remote-island shoreline cleanup activities demonstrate the continued accumulation of large plastic debris. Policies to address plastic pollution in the Gulf of Maine could strive to minimize littering or at-sea disposal, while also supporting environmental cleanup

    The United States' contribution of plastic waste to land and ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. The United States' contribution of plastic waste to land and ocean. Science Advances, 6(44), (2020): eabd0288, doi:10.1126/sciadv.abd0288.Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.0 Mt). Between 0.14 and 0.41 Mt of this waste was illegally dumped in the United States, and 0.15 to 0.99 Mt was inadequately managed in countries that imported materials collected in the United States for recycling. Accounting for these contributions, the amount of plastic waste generated in the United States estimated to enter the coastal environment in 2016 was up to five times larger than that estimated for 2010, rendering the United States’ contribution among the highest in the world.This work was funded by Ocean Conservancy through support from the Arthur Vining Davis Foundations

    Relative exposure to microplastics and prey for a pelagic forage fish

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chavarry, J. M., Law, K. L., Barton, A. D., Bowlin, N. M., Ohman, M. D., & Choy, C. A. Relative exposure to microplastics and prey for a pelagic forage fish. Environmental Research Letters, 17(6), (2022): 064038, https://doi.org/10.1088/1748-9326/ac7060.In the global ocean, more than 380 species are known to ingest microplastics (plastic particles less than 5 mm in size), including mid-trophic forage fishes central to pelagic food webs. Trophic pathways that bioaccumulate microplastics in marine food webs remain unclear. We assess the potential for the trophic transfer of microplastics through forage fishes, which are prey for diverse predators including commercial and protected species. Here, we quantify Northern Anchovy (Engraulis mordax) exposure to microplastics relative to their natural zooplankton prey, across their vertical habitat. Microplastic and zooplankton samples were collected from the California Current Ecosystem in 2006 and 2007. We estimated the abundance of microplastics beyond the sampled size range but within anchovy feeding size ranges using global microplastic size distributions. Depth-integrated microplastics (0–30 m depth) were estimated using a depth decay model, accounting for the effects of wind-driven vertical mixing on buoyant microplastics. In this coastal upwelling biome, the median relative exposure for an anchovy that consumed prey 0.287–5 mm in size was 1 microplastic particle for every 3399 zooplankton individuals. Microplastic exposure varied, peaking within offshore habitats, during the winter, and during the day. Maximum exposure to microplastic particles relative to zooplankton prey was higher for juvenile (1:23) than adult (1:33) anchovy due to growth-associated differences in anchovy feeding. Overall, microplastic particles constituted fewer than 5% of prey-sized items available to anchovy. Microplastic exposure is likely to increase for forage fishes in the global ocean alongside declines in primary productivity, and with increased water column stratification and microplastic pollution.This work originated from the Plastic Awareness Global Initiative (PAGI) international workshop, hosted by the Center for Marine Biodiversity and Conservation (CMBC) at Scripps Institution of Oceanography at the University of California San Diego in 2018, with support from Igor Korneitchouk and the Wilsdorf Mettler Future Foundation. We thank the workshop participants for early discussions and a collaborative meeting space. We thank Kelly Lance for her illustration contributions, and the SIO Communications Office for their support. We thank Miriam Doyle and Ryan Rykaczewski for their assistance in data acquisition, and we thank Penny Dockry and Stuart Sandin of CMBC for administrative and logistical support. Julia Chavarry was supported by the San Diego Fellowship. This paper is a contribution from the California Current Ecosystem Long Term Ecological Research site, supported by the National Science Foundation

    The physical oceanography of the transport of floating marine debris

    Get PDF
    Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (both in situ and in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales

    Toward the integrated marine debris observing system

    Get PDF
    Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS) that is required to provide long-term monitoring of the state of this anthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve a diverse community of users

    Seabirds, gyres and global trends in plastic pollution

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Pollution 203 (2015): 89-96, doi:10.1016/j.envpol.2015.02.034.Fulmars are effective biological indicators of the abundance of floating plastic marine debris. Long-term data reveal high plastic abundance in the southern North Sea, gradually decreasing to the north at increasing distance from population centres, with lowest levels in high-arctic waters. Since the 1980s, pre-production plastic pellets in North Sea fulmars have decreased by ∌75%, while user plastics varied without a strong overall change. Similar trends were found in net-collected floating plastic debris in the North Atlantic subtropical gyre, with a ∌75% decrease in plastic pellets and no obvious trend in user plastic. The decreases in pellets suggest that changes in litter input are rapidly visible in the environment not only close to presumed sources, but also far from land. Floating plastic debris is rapidly “lost” from the ocean surface to other as-yet undetermined sinks in the marine environment.This paper had its origin in the Marine Debris working group convened by the National Center for Ecological Analysis and Synthesis (NCEAS), University of California, Santa Barbara, with support from Ocean Conservancy

    All is not lost: Deriving a top-down mass budget of plastic at sea.

    No full text
    Understanding the global mass inventory is one of the main challenges in present research on plastic marine debris. Especially the fragmentation and vertical transport processes of oceanic plastic are poorly understood. However, whereas fragmentation rates are unknown, information on plastic emissions, concentrations of plastics in the ocean surface layer (OSL) and fragmentation mechanisms is available. Here, we apply a systems engineering analytical approach and propose a tentative 'whole ocean' mass balance model that combines emission data, surface area-normalized plastic fragmentation rates, estimated concentrations in the OSL, and removal from the OSL by sinking. We simulate known plastic abundances in the OSL and calculate an average whole ocean apparent surface area-normalized plastic fragmentation rate constant, given representative radii for macroplastic and microplastic. Simulations show that 99.8% of the plastic that had entered the ocean since 1950 had settled below the OSL by 2016, with an additional 9.4 million tons settling per year. In 2016, the model predicts that of the 0.309 million tons in the OSL, an estimated 83.7% was macroplastic, 13.8% microplastic, and 2.5% was < 0.335 mm 'nanoplastic'. A zero future emission simulation shows that almost all plastic in the OSL would be removed within three years, implying a fast response time of surface plastic abundance to changes in inputs. The model complements current spatially explicit models, points to future experiments that would inform critical model parameters, and allows for further validation when more experimental and field data become available
    corecore