135 research outputs found

    Emerging energy sources' social acceptability: Evidence from marine-based energy projects

    Get PDF
    Any decrease in global warming and its effects can only occur with a substantial reduction in anthropogenic CO2 emissions. In this context, renewable energy sources, particularly emerging sources, may play a central role in accelerating the transition from fossil fuels to cleaner energy sources. Emerging energy sources are renewable and have the potential to reduce global warming emissions; however, they are in the early development stages. These technologies include enhanced geothermal processes, artificial photosynthesis, and marine energy. In this study, we assess the main attributes that determine the social acceptance of renewable marine energy projects, highlighting individual preferences and heterogeneity for these projects. The results show that energy generation, ecological impact, job creation, co-ownership, and distributional justice are statistically significant attributes that support projects. However, individual preferences are highly heterogeneous. The existence of distinct classes (two in this case) with different preferences for marine energy attributes indicates that the one-size-fits-all approach may be inappropriate. Instead, policymakers and energy producers should tailor their proposals to meet the needs of both groups, considering their preferences and concerns

    Highly fluorinated erbium(III) complexes for emission in the C-band

    Get PDF
    Two highly fluorinated Er3+ complexes with three 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) groups and either bipyridine (bipy) or bathophenantholine (bath) as the ancillary ligand emitting at the C-band (third communication window for fiber transmission) are presented. These complexes are the result of a design process aimed at decreasing the vibrational quenching from high frequency oscillators. The structure of [Er(fod)3(bipy)] has been elucidated by single-crystal X-ray diffraction, while Sparkle/PM6 and Sparkle/PM7 semi-empirical calculations have been used to model the ground state geometry for [Er(fod)3(bath)]. Photoluminescence studies confirm sensitization of the Er3+ ions by antenna effect, leading to NIR emission at 1.53 μm. This energy transfer proves to be more efficient for [Er(fod)3(bath)] as a result of the bulkier and more rigid structure of bath diimide. The good thermal stability of the materials up to over 200 °C allows envisaging their use in erbium-doped waveguides, NIR-OLEDs or other optoelectronic devices

    An erbium(III)-based NIR emitter with a highly conjugated ß-diketonate for blue-region sensitization

    Get PDF
    The sensitization of lanthanide complexes in the visible region is of particular interest for practical applications such as labeling, biological analysis and optoelectronics. A visible-light sensitized Er3+complex based on the use of a highly conjugated ß-diketonate (1, 3-di(2-naphthyl)-1, 3-propanedione, Hdnm) and 5-nitro-1, 10-phenanthroline (5NO2phen) as an ancillary ligand, [Er(dnm)3(5NO2phen)], has been synthesized, fully characterized and its photophysical properties have been investigated. Suitably expanded p-conjugation in the complex molecule makes the excitation window red-shifted to the visible region (up to 550 nm). Efficient energy transfer by antenna effect results in 1.53 µm emission from the Er3+ion

    Optical nanothermometer based on the calibration of the Stokes and upconverted green emissions of Er3+ ions in Y3Ga5O12 nano-garnets

    Get PDF
    The temperature-dependent green luminescence of Y3Ga5O12 nano-garnets doped with different concentrations of Er3+ ions has been measured from 300 to 850 K and, in more detail, in the biological range from 292 to 335 K. The green emissions were obtained by excitation under 488 nm blue or 800 nm near-infrared laser radiations. Both excitations give rise to bright green luminescence that can be seen by the naked eye, and which can be associated either with Stokes processes, i.e. multiphonon relaxations followed by green spontaneous emission, in the former case or with infrared-to-visible upconversion processes in the latter. The temperature-induced changes in the Er3+ green emissions have been calibrated for both excitations and results point to a strong dependence on the concentration of optically active Er3+ ions. The maximum value of the thermal sensitivity, 64 × 10−4 K−1 at 547 K, has been obtained for the nano-garnets doped with the lowest concentration of Er3+ ions, which is one of the highest values found in the literature. These results allow to conclude that a relatively low concentration of optically active ions is advisable and the changes induced by temperature on the green emissions are independent of the laser excitation radiation used, which is necessary to calibrate the temperature of the immediate environment of the Er3+-doped Y3Ga5O12 nano-garnets.This work have been partially supported by Ministerio de Economía y Competitividad de España (MINECO) under The National Program of Materials (MAT2010-21270-C04-02/-03, and MAT2013-46649-C4-3-P/-4-P), The Consolider-Ingenio 2010 Program (MALTA CSD2007-00045), and the Indo- Spanish Joint Programme of Cooperation in Science and Technology (PRI-PIBIN-2011-1153/DST-INT-Spain-P-38-11), and by the EU-FEDER funds. V. Venkatramu is also grateful to Council of Scientific and Industrial Research (CSIR), New Delhi for the sanction of major research project (No. 03(1229)/12/EMR-II, dated: 16th April, 2012). V. Monteseguro wishes to thank MICINN for the FPI grant (BES-2011- 044596)

    Electronic and elastic properties of yttrium gallium garnet under pressure from ab initio studies

    Full text link
    In this paper, we present an ab initio study within the framework of density functional theory employing the generalized gradient approximation applied to the study of the structural, elastic, and electronic properties of yttrium gallium garnet, Y3Ga5O12, under hydrostatic pressure. The calculated structural ground state properties are in good agreement with the available experimental data. Pressure dependence of the elastic constants and the mechanical stability are analysed up to 90 GPa, showing that the garnet is mechanically unstable above 84 GPa. We also present the electronic band structure calculations which show that upon compression the fundamental direct gap first increases up to 63 GPa and later monotonically decreases under pressure. (C) 2013 AIP Publishing LLC.This work has been supported by Ministerio de Ciencia e Innovacion of Spain (MICINN) under the National Program of Materials (MAT2010-21270-C04-02/03/04) and the Consolider-Ingenio 2010 Program (MALTA CSD2007-0045), by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11) and by the EU-FEDER funds. V. Monteseguro wishes to thank MICINN for the FPI Grant (BES-2011-044596). We thank the computer time provided by the Red Espanola de Supercomputacion (RES).Monteseguro, V.; Rodríguez-Hernández, P.; Lavín, V.; Manjón Herrera, FJ.; Muñoz, A. (2013). Electronic and elastic properties of yttrium gallium garnet under pressure from ab initio studies. Journal of Applied Physics. 113(18):183505-1-183505-8. https://doi.org/10.1063/1.4804133S183505-1183505-81131

    New records of Chondrichthycians species caught in the Cantabrian Sea (southern Bay of Biscay)

    Get PDF
    Seventeen chondrichthyan species were caught in the Cantabrian Sea (southern Bay of Biscay) during a multidisciplinary survey carried out in the Avile´s canyon system in May 2011. This survey provided the first records of three species (Galeus murinus, Neoraja iberica, and Neoraja caerulea) in these waters, and a further record of Rajella kukujevi. To confirm the identity of these species, the cytochrome c oxidase subunit I (COI) of the specimens was sequenced. Genetic analyses revealed that the DNA sequences of the two Neoraja species were identical in all the specimens analysed. Morphometric analyses, based on 40 characters, showed 3.66% dissimilarity between the two species. The morphometric character that contributed most to this discrepancy was disc width.Versión del editor1,023

    Experimental and theoretical study of α–Eu2(MoO4)3 under compression

    Full text link
    The compression process in the α-phase of europium trimolybdate was revised employing several experimental techniques. X-ray diffraction (using synchrotron and laboratory radiation sources), Raman scattering and photoluminescence experiments were performed up to a maximum pressure of 21 GPa. In addition, the crystal structure and Raman mode frequencies have been studied by means of first-principles density functional based methods. Results suggest that the compression process of α-Eu2(MoO4)3 can be described by three stages. Below 8 GPa, the α-phase suffers an isotropic contraction of the crystal structure. Between 8 and 12 GPa, the compound undergoes an anisotropic compression due to distortion and rotation of the MoO4 tetrahedra. At pressures above 12 GPa, the amorphization process starts without any previous occurrence of a crystalline-crystalline phase transition in the whole range of pressure. This behavior clearly differs from the process of compression and amorphization in trimolybdates with β′-phase and tritungstates with α-phase.We thank Diamond Light Source for access to beamline I15 (EE1746) that contributed to the results presented here. Part of the diffraction measurements were performed at the 'Servicio Integrado de Difraccion de Rayos X (SIDIX)' of University of La Laguna. This work has been supported by Ministerio de Economia y Competitividad of Spain (MINECO) for the research projects through the National Program of Materials (MAT2010-21270-C04-01/02/03/04, MAT2013-46649-C41/2/3/4-P and MAT2013-43319-P), the Consolider-Ingenio 2010 MALTA (CSD2007-00045), the project of Generalitat Valenciana (GVA-ACOMP/2014/243) and by the European Union FEDER funds. C Guzman-Afonso wishes to thank ACIISI and FSE for a fellowship. J A Sans thanks the FPI and 'Juan de la Cierva' programs for fellowships.Guzmán-Afonso, C.; León-Luis, S.; Sans-Tresserras, JÁ.; González -Silgo, C.; Rodríguez-Hernández, P.; Radescu, S.;  muñoz, A.... (2015). Experimental and theoretical study of α–Eu2(MoO4)3 under compression. Journal of Physics: Condensed Matter. 27(46):465401-1-465401-11. https://doi.org/10.1088/0953-8984/27/46/465401S465401-1465401-11274

    Rapid Effects of Marine Reserves via Larval Dispersal

    Get PDF
    Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    YES1 drives lung cancer growth and progression and predicts sensitivity to dasatinib

    Get PDF
    Rationale: The characterization of new genetic alterations is essential to assign effective personalized therapies in non–small cell lung cancer (NSCLC). Furthermore, finding stratification biomarkers is essential for successful personalized therapies. Molecular alterations of YES1, a member of the SRC (proto-oncogene tyrosine-protein kinase Src) family kinases (SFKs), can be found in a significant subset of patients with lung cancer. Objectives: To evaluate YES1 (v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1) genetic alteration as a therapeutic target and predictive biomarker of response to dasatinib in NSCLC. Methods: Functional significance was evaluated by in vivo models of NSCLC and metastasis and patient-derived xenografts. The efficacy of pharmacological and genetic (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 [CRISPR-associated protein 9]) YES1 abrogation was also evaluated. In vitro functional assays for signaling, survival, and invasion were also performed. The association between YES1 alterations and prognosis was evaluated in clinical samples. Measurements and Main Results: We demonstrated that YES1 is essential for NSCLC carcinogenesis. Furthermore, YES1 overexpression induced metastatic spread in preclinical in vivo models. YES1 genetic depletion by CRISPR/Cas9 technology significantly reduced tumor growth and metastasis. YES1 effects were mainly driven by mTOR (mammalian target of rapamycin) signaling. Interestingly, cell lines and patient-derived xenograft models with YES1 gene amplifications presented a high sensitivity to dasatinib, an SFK inhibitor, pointing out YES1 status as a stratification biomarker for dasatinib response. Moreover, high YES1 protein expression was an independent predictor for poor prognosis in patients with lung cancer. Conclusions: YES1 is a promising therapeutic target in lung cancer. Our results provide support for the clinical evaluation of dasatinib treatment in a selected subset of patients using YES1 status as predictive biomarker for therapy
    corecore