10 research outputs found

    Regulation der 5-Lipoxygenase durch humane Cytomegalovirus-Infektion

    Get PDF
    Die 5-Lipoxygenase ist das Schlüsselenzym der Bildung proentzündlicher Leukotriene. Diese Mediatoren sind assoziiert mit Erkrankungen des entzündlichen Formenkreises wie beispielsweise Arteriosklerose [6]. Durch die Veröffentlichungen von Qiu et. al. [248] und Gredmark-Russ et. al. [650] konnte gezeigt werden, dass die Infektion mit humanen Cytomegalovirus in vitro und in vivo zur Induktion der 5-LO in HPASMCs und SMCs (smooth muscle cells) führt. HCMV ist ein ß-Herpesvirus, welches nach einer zumeist asymptomatischen Primärinfektion, dauerhaft im Wirt persisiert und bei Schwächung des Immunsystems oder entzündliche Prozessen reaktiviert werden kann [256]. Geht das Virus in die lytische Replikationsphase über, werden Entzündungsprozesse gefördert, die zur Ausprägung von Krankheitsbildern wie Retinitis, rheumatoider Arthritis oder auch Psoriasis führen. Es besteht demnach ein Zusammenhang zwischen der aktiven HCMV-Infektion und Erkrankungen des entzündlichen Formenkreises, welche unter anderem durch die Induktion der 5-LO vermittelt wurden. Ziel der Arbeit war es, den molekularen Mechanismus der viral induzierten 5-LO-Promotoraktivierung aufzuklären. Dazu wurde zunächst überprüft, ob die Infektion mit HCMV in HFF, einer Zelllinie die äußerst permissiv für die Infektion ist und daher zumeist als Testsystem für HCMV herangezogen wird, eine verstärkte 5-LO-Expression hervorruft, oder ob es sich um einen zelltypspezifischen Effekt der smooth muscle cells handelt. Es konnte gezeigt werden, dass es nach Infektion zu einer verstärkten Promotoraktivierung, mRNS- sowie Proteinexpression der 5-LO kam (Abb. 19, 23, 24). Weitere Untersuchungen charakterisierten, welches virale Protein die Effektvermittlung bedingte. Aufgrund der sequentiellen Genexpression des Virus unterscheidet man nach Zeitpunkt der Expression in Immediate Early, Early und Late Proteine, wobei letztere erst nach Replikation des viralen Genoms exprimiert werden. Der Zusatz von Foscavir als Replikationsinhibitor verdeutlichte, dass ein Immediate Early oder Early Protein die Induktion hervorruft (Abb. 16). Reportergenassay-Experimente unter Überexpression einzelner viraler Proteine zeigten, dass Immediate Early 1 essentiell an der Erhöhung der 5-LO-Promotoraktivität beteiligt ist (Abb. 18). Weitergehende Versuche unter Verwendung des IE1-Deletionsvirus CR208 bestätigten, dass die Induktion der 5-LO-Promotoraktivität sowie der mRNS-Expression durch dieses virale Protein vermittelt wird (Abb. 18, 20-22). Auf Proteinebene konnte ebenfalls nach IE1-Überexpression beziehungsweise nach Infektion mit HCMV eine erhöhte 5-LO-Expression detektiert werden (Abb. 23 und 24). Aktivitätsuntersuchungen, bei denen die Konzentration der 5-LO-Produkte LTB4 und 5-HETE gemessen wurden, bestätigten, dass das Enzym funktionsfähig ist (Abb. 25). Nach Infektion mit HCMV kommt es demnach zur IE1-vermittelten Induktion der 5-LO auf mRNS- und Proteinebene sowie nachgeordnet zur verstärkten Produktion von inflammatorischen Leukotrienen, die an der Ausbildung der entzündlichen Symptomatik einer lytischen Infektion beteiligt sind. Immediate Early 1 ist ein potenter Transaktivator, der sowohl virale als auch zelluläre Promotorstrukturen aktivieren kann [387]. Funktionell wird dies reguliert über die Förderung der Transkriptionsfaktor-Expression, aber auch durch Beeinflussung histonmodifizierender Enzyme wie Histondeacetylasen [464]. Für den 5-LO-Promotor ist bekannt, dass dessen Aktivität über Bindung von Sp1, sowie durch HDAC-Inhibition beeinflusst werden kann [9, 171]. Diese beiden Regulationsmechanismen stellen demnach mögliche Verknüpfungspunkte in der viral induzierten Induktion des 5-LO-Promotors dar. Zunächst wurde die Expression von Transkriptionsfaktoren, welche charakterisierte Bindungsstellen im 5-LO-Promotor besitzen, nach IE1-Überexpression untersucht. Es zeigte sich, dass der zelluläre Sp1-mRNS-Spiegel durch IE1 80fach induziert werden kann (Abb. 27). Im Reportergenassay mit 5-LO-Promotordeletionskonstrukten, bei denen gezielt einzelne Sp1-Bindungsstellen, sogenannte GC-Boxen, mutiert wurden, konnte bestätigt werden, dass die IE1-vermittelte Induktion essentiell von Sp1-abhängt, da die Mutation der GC4-Box die Aktivierung nahezu komplett inhibiert (Abb. 30, 31). Auch der Zusatz von Mithramycin, einem DNS-Interkalator, welcher die Bindung von Sp1 an die DNS unterdrückt, ist in der Lage die Induktion abzuschwächen (Abb. 33) [651]. Um die direkte Sp1-Bindung an den 5-LO-Promotor nachzuweisen wurden sowohl EMSA- als auch ChIP-Experimente durchgeführt. Es zeigte sich, dass in vitro und in vivo die Sp1-Bindung an den proximalen 5-LO-Promotor nach IE1-Überexpression beziehungsweise nach Infektion zunimmt (Abb. 49, 50). Interessanterweise wird dieser Effekt nicht durch Immediate Early 2, einer Spleißvariante von IE1, welche eine große strukturelle Ähnlichkeit aufweist, hervorgerufen. Da Veröffentlichungen gezeigt haben, dass beide Immediate Early Proteine in der Lage sind, Sp1 auf mRNS-Level zu induzieren, muss ein weiterer regulatorischer Mechanismus in die Sp1-Promotorbindung involviert sein [410]. In Co-Immunopräzipitations Versuchen zeigten beide IEPs eine Interaktion mit Sp1 (Abb. 38), wonach der Unterschied in der transaktivierenden Fähigkeit des 5-LO-Promotors nicht durch Protein-Protein-Bindung mit Sp1 bedingt wird. Strukturell unterscheiden sich die beiden Proteine in ihrer carboxyterminalen Sequenz. Für IE1 ist hier eine intrinsische Kinaseaktivität beschrieben, die zur Autophosphorylierung, aber auch zur Phosphorylierung von Bindungsproteinen führen kann. Western Blot Analysen auf den zellulären phospho-Sp1-Gehalt nach viraler Überexpression konnten zeigen, dass IE1, nicht aber IE2 die posttranslationale Modifikation des Transkriptionsfaktors fördert (Abb. 39). Auch die Testung viraler Deletionsmutanten, denen einzelne Exons beziehungsweise die ATP-Bindungsstelle der Kinasedomäne fehlen, bestätigten die Schlüsselfunktion dieses Strukturelements (Abb. 37). Ob es sich um eine direkte oder indirekte Phosphorylierung von Sp1 durch IE1 handelt wurde durch in vitro Kinase-Assays und die Testung unterschiedlicher Proteinkinase-Inhibitoren bestimmt (Abb. 40, 42, 45). Obwohl die beiden Proteine miteinander interagieren können, kam es nicht zu einer direkten Phosphorylierung, sondern zelluläre Kinasen wie Tyrosinkinasen und nachgeordnet die Mitglieder des MAPK-Signalweges sind in die Phosphorylierung von Sp1 involviert. Die finale Bestätigung der essentiellen Funktion von Sp1 in der IE1-vermittelten Aktivierung des 5-LO-Promotors lieferte ein Reportergenassay-Experiment mit Sp1-Knock-down Zellen, welche nach viraler Überexpression keine 5-LO-Promotoraktivität und mRNS-Expression mehr zeigten (Abb. 47, 48). Für die Vermittlung der IE1-induzierten 5-LO-Promotoraktivierung sind dessen transaktivatorische Fähigkeiten demnach essentiell, durch Erhöhung der Sp1-mRNS-Expression und nachfolgender Phosphorylierung wird die DNS-Bindung des Transkriptionsfaktors an die GC4-Box des 5-LO-Promotors erhöht und dieser damit transkriptionell aktiviert. Neben der Regulation über verstärkte phospho-Sp1-Bindung an die GC4-Box Region muss die Induktion von 5-LO durch IE1 noch über weitere Interaktionen vermittelt werden, da die reine Sp1-Überexpression ohne IE1 keine Promotoraktivierung hervorrufen konnte (Abb. 34). Überprüft wurde daher die HDAC-inhibitorische Fähigkeit von IE1, da der 5-LO-Promotor über diese epigenetischen Mechanismen reguliert werden kann. Pull-down-Experimente zeigten zunächst eine Protein-Protein-Interaktion zwischen IE1 und HDAC1/2/3 (Abb. 51). Nachfolgend konnte in einem HDAC-Aktivitätsassay gezeigt werden, dass diese Interaktion die Enzymaktivität der HDACs drastisch reduziert (Abb. 52). Durch HDAC-Inhibition liegen Promotorstrukturen zunehmend acetyliert vor und sind damit transkriptionell aktiv. Für den funktionellen Nachweis auf den 5-LO-Promotor diente ein Reportergenassay-Experiment in dem IE1 und in steigenden Mengen HDAC überexprimiert wurde (Abb. 53). Die Überexpression von HDAC1 und HDAC3 konnten den aktivierenden Einfluss von IE1 auf den 5-LO-Promotor teilweise konzentrationsabhängig revertieren und scheinen damit an der Effektvermittlung beteiligt zu sein. Die Charakterisierung der HDAC-vermittelten 5-LO-Promotorregulation von Pufahl et. al. bestätigte durch Knock-down Experimente, dass HDAC3 entscheidenden Einfluss auf den 5-LO-Promotor hat [172]. HDAC1 dagegen reguliert über die verstärkte Deacetylierung von Sp1 dessen DNS-Bindungsaffinität. Eine Hemmung dieser beiden Histondeacetylasen durch das virale Protein erhöht damit die Aktivität des 5-LO-Promotors. Zusammenfassend lässt sich sagen, dass das Ziel der Arbeit erreicht wurde und ein detaillierter Mechanismus der 5-LO-Promotoraktivierung durch HCMV aufgeklärt wurde. Immediate Early 1 induziert dabei zunächst die Expression und Phosphorylierung von Sp1. Ebenso interagiert das virale Protein mit HDAC1/2/3 und hemmt deren Aktivität, wodurch es zur Öffnung der 5-LO-Promotorstruktur kommt. Entscheiden ist hierbei vor allem die Hemmung von HDAC3. HDAC1 Inhibition sorgt im getesteten Zellsystem zusätzlich für verstärkte Acetylierung des Transkripti-onsfaktors Sp1, welcher aufgrund der dadurch erhöhten DNS-Bindungsaffinität an die GC4-Box-Region binden und so die Transkription fördern kann. Interessanterweise ist die Bindung an andere beschriebene GC-Boxen des 5-LO-Promotors nicht induktiv, was die Annahme nahelegt, dass nicht Sp1 alleine, sondern ein transaktivatorischer Komplex an diese Region bindet. Die Aktivierung des Promotors führt nachfolgend zur mRNS- und Proteinexpression, welche eine verstärkte Leukotrienbildung zur Folge hat. Diese Mediatoren sind in die Entstehung der entzündlichen Charakteristik einer aktiven HCMV involviert. Das Virus macht sich demnach generelle Prinzipien der Transaktivierung zu Nutze und fördert so zum einen seine Reaktivierung aus der Latenz, zum anderen die produktive Verbreitung der Infektion

    Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3

    Get PDF
    The 5-lipoxygenase (5-LO) is the key enzyme in the formation of leukotrienes. We have previously shown that the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) activates 5-LO transcription via recruitment of Sp1, Sp3 and RNA polymerase II to the proximal promoter. To identify the HDACs involved in the regulation of 5-LO promoter activity isoform-specific HDAC inhibitors were applied. 5-LO promoter activity and mRNA expression were up-regulated by the class I HDAC inhibitors apicidin and MS-275 but not by class II inhibitors. Knockdown of HDAC 1, 2 and 3 revealed that HDAC2 and HDAC3 but not HDAC1 is involved in the up-regulation of 5-LO mRNA expression. To analyse the chromatin modifications at the 5-LO promoter associated with HDAC inhibition, the time course of 5-LO mRNA induction by trichostatin A was investigated and the concomitant changes in histone modifications at the 5-LO promoter in HL-60, U937 and Mono Mac6 cells were determined. Chromatin immunoprecipitation analysis revealed that trichostatin A increases acetylation of histones H3 and H4 at the 5-LO core promoter in HL-60 and U937 cells whereas no significant changes were observed in Mono Mac6 cells. The appearance of H3 and H4 acetylation preceded the 5-LO mRNA induction whereas in all three cell lines, induction of 5-LO mRNA expression correlated with histone H3 lysine 4 trimethylation (H3K4me3), a marker for transcriptional activity of gene promoters

    Post-Transcriptional Regulation of 5-Lipoxygenase mRNA Expression via Alternative Splicing and Nonsense-Mediated mRNA Decay

    Get PDF
    5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes (LT), a group of inflammatory lipid mediators derived from arachidonic acid. Here, we investigated the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD). In the present study, we report the identification of 2 truncated transcripts and 4 novel 5-LO splice variants containing premature termination codons (PTC). The characterization of one of the splice variants, 5-LOΔ3, revealed that it is a target for NMD since knockdown of the NMD factors UPF1, UPF2 and UPF3b in the human monocytic cell line Mono Mac 6 (MM6) altered the expression of 5-LOΔ3 mRNA up to 2-fold in a cell differentiation-dependent manner suggesting that cell differentiation alters the composition or function of the NMD complex. In contrast, the mature 5-LO mRNA transcript was not affected by UPF knockdown. Thus, the data suggest that the coupling of alternative splicing and NMD is involved in the regulation of 5-LO gene expression

    Individual knockdown of NMD factors in MM6 cells.

    No full text
    <p>(A) Western blot analysis of UPF1, UPF2 and UPF3b protein expression in MM6 cells with and without knockdown of UPF1, UPF2 and UPF3b, respectively. Cell lysates (50–250 µg protein) in SDS-PAGE loading buffer (5×) were separated by 10% SDS-PAGE and transferred to a nitrocellulose membrane by electro blotting. The membrane was incubated with UPF1, UPF2, UPF3b and β-actin antibody. Visualization of protein bands was carried out by the use of infrared dye-conjugated antibodies (IRDye®), and analysis was performed with the Odyssey® infrared imaging system (<i>LI-COR</i>® Biosciences). β-actin was used as loading control. The relative changes of UPF knockdown samples to control samples (set as 1) are given as mean+SEM of three independent experiments, **p<0.01. (B) Effect of UPF knockdowns on 5-LOΔ3 and mature 5-LO mRNA expression in MM6 cells. The cells were cultured with and without TGFβ (1 ng/ml) and calcitriol (50 nM) for 24 h. Then, total RNA was isolated and cDNA was prepared by random hexamer priming. PCR analysis was carried out using primer pair G for 5-LOΔ3. For analysis of the mature 5-LO transcript, the total RNA was reverse transcribed using oligo-dT primers. PCR was performed using primer pair F and β-actin mRNA served as constitutively expressed control. Variations in the expression levels compared to non-treated samples (set as 1) are given as the mean+SE of three or four independent experiments, *p<0.05, **p<0.01.</p

    Western blot analysis of UPF protein expression in MM6 cells.

    No full text
    <p>Western blot analysis of UPF protein expression in MM6 cells incubated with and without TGFβ (1 ng/ml) and calcitriol (50 nM) for 24 h. Differentiation-dependent relative changes in UPF protein expression compared to undifferentiated samples (set to 1) are given as the mean+SE of three independent experiments.</p

    Identification of novel 5-LO splice variants in MM6 cells.

    No full text
    <p>(A) Schematic representation of the identified 5-LO splice variants. (B) RT-PCR products obtained with primer pair C (exon 2 to exon 5), D (exon 5 to exon 10) and E (exon 10 to exon 14) separated on a 1.5% agarose gel. Asterisks indicate the alternative splicing products whose existence was confirmed by at least one sequenced recombinant clone.</p

    Quantification of alternatively and correctly spliced 5-LO mRNA.

    No full text
    <p>Time courses of 5-LO mRNA induction in MM6 cells cultured with (diff) and without (undiff) TGFβ (1 ng/ml) and calcitriol (50 nM). Total RNA was extracted and cDNA was prepared using random hexamer primers for the PCR analysis of correctly spliced 5-LO pre-mRNA applying primer pair C (exon 2 to exon 5) and E (exon 10 to exon 14). 5-LOΔ3 mRNA was determined by primer pair G. For the specific analysis of the mature 5-LO transcripts, the samples were reverse transcribed with oligo-dT priming and the cDNA was amplified with primer pair F (exon 13 to 3′UTR). β-actin mRNA served as constitutively expressed control. The relative changes to day 0 are given as the mean+SE of three independent experiments. Time courses of 5-LO mRNA in (A) differentiated and (B) undifferentiated MM6 cells. (C) Time courses of 5-LOΔ3 mRNA in MM6 cells cultured with (diff) and without (undiff) TGFβ (1 ng/ml) and calcitriol (50 nM). 5-LOΔ3 cDNA was analyzed using primer pair G. For the analysis of correctly spliced 5-LO mRNA the primer pair C was used.</p

    Effect of NMD inhibition by puromycin on 5-LOΔ3 splice variant and mature 5-LO transcript expression.

    No full text
    <p>The cells were cultured with and without TGFβ (1 ng/ml) and calcitriol (50 nM) for 24 h. Differentiated and undifferentiated MM6 cells were cultured for 24 h and finally treated with puromycin (300 µg/mL) for 8 h. Total RNA was isolated and the cDNA was prepared by random hexamer priming. The cDNA was amplified by PCR using primer pair G for the analysis of 5-LOΔ3 mRNA. For RT-PCR analysis of the mature 5-LO transcript (5-LO MT), the total RNA was reverse transcribed using oligo-dT primers. PCR was performed using primer pair F and β-actin mRNA served as constitutively expressed control. Variations in the expression levels compared to non-treated samples (set as 1) are given as the mean+SE of three or four independent experiments, *p<0.05.</p

    Uranium isotope fractionation during coprecipitation with aragonite and calcite

    No full text
    © 2016 Elsevier Ltd. Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~8.5 to study possible U isotope fractionation during incorporation into these minerals.Small but significant U isotope fractionation was observed in aragonite experiments at pH ~8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (\u3c0.13‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U
    corecore