26 research outputs found

    Angiopathic activity of LRG1 is induced by the IL-6/STAT3 pathway

    Get PDF
    Leucine-rich α-2-glycoprotein 1 (LRG1) is a secreted glycoprotein that under physiological conditions is produced predominantly by the liver. In disease, its local induction promotes pathogenic neovascularisation while its inhibition leads to reduced dysfunctional angiogenesis. Here we examine the role of interleukin-6 (IL-6) in defective angiogenesis mediated by LRG1. IL-6 treatment induced LRG1 expression in endothelial cells and ex vivo angiogenesis cultures and promoted vascular growth with reduced mural cell coverage. In Lrg1<sup>-/-</sup> explants, however, IL-6 failed to stimulate angiogenesis and vessels exhibited improved mural cell coverage. IL-6 activated LRG1 transcription through the phosphorylation and binding of STAT3 to a conserved consensus site in the LRG1 promoter, the deletion of which abolished activation. Blocking IL-6 signalling in human lung endothelial cells, using the anti-IL6 receptor antibody Tocilizumab, significantly reduced LRG1 expression. Our data demonstrate that IL-6, through STAT3 phosphorylation, activates LRG1 transcription resulting in vascular destabilisation. This observation is especially timely in light of the potential role of IL-6 in COVID-19 patients with severe pulmonary microvascular complications, where targeting IL-6 has been beneficial. However, our data suggest that a therapy directed towards blocking the downstream angiopathic effector molecule LRG1 may be of greater utility

    Pathologic and biologic response to preoperative endocrine therapy in patients with ER-positive ductal carcinoma in situ

    Get PDF
    Abstract Background Endocrine therapy is commonly recommended in the adjuvant setting for patients as treatment for ductal carcinoma in situ (DCIS). However, it is unknown whether a neoadjuvant (preoperative) anti-estrogen approach to DCIS results in any biological change. This study was undertaken to investigate the pathologic and biomarker changes in DCIS following neoadjuvant endocrine therapy compared to a group of patients who did not undergo preoperative anti-estrogenic treatment to determine whether such treatment results in detectable histologic alterations. Methods Patients (n = 23) diagnosed with ER-positive pure DCIS by stereotactic core biopsy were enrolled in a trial of neoadjuvant anti-estrogen therapy followed by definitive excision. Patients on hormone replacement therapy, with palpable masses, or with histologic or clinical suspicion of invasion were excluded. Premenopausal women were treated with tamoxifen and postmenopausal women were treated with letrozole. Pathologic markers of proliferation, inflammation, and apoptosis were evaluated at baseline and at three months. Biomarker changes were compared to a cohort of patients who had not received preoperative treatment. Results Median age of the cohort was 53 years (range 38–78); 14 were premenopausal. Following treatment, predominant morphologic changes included increased multinucleated histiocytes and degenerated cells, decreased duct extension, and prominent periductal fibrosis. Two postmenopausal patients had ADH only with no residual DCIS at excision. Postmenopausal women on letrozole had significant reduction of PR, and Ki67 as well as increase in CD68-positive cells. For premenopausal women on tamoxifen treatment, the only significant change was increase in CD68. No change in cleaved caspase 3 was found. Two patients had invasive cancer at surgery. Conclusion Preoperative therapy for DCIS is associated with significant pathologic alterations. These changes may be clinically significant. Further work is needed to identify which women may be the best candidates for such treatment for DCIS, and whether best responders may safely avoid surgical intervention. Trial Registration ClinicalTrials.gov NCT0029074

    Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer

    Get PDF
    BACKGROUND: Drug resistance in breast cancer is a major obstacle to successful chemotherapy. In this study we used cDNA microarray technology to examine gene expression profiles obtained from fine needle aspiration (FNA) of primary breast tumors before and after systemic chemotherapy. Our goal was to determine the feasibility of obtaining representative expression array profiles from limited amounts of tissue and to identify those expression profiles that correlate with treatment response. METHODS: Repeat presurgical FNA samples were taken from six patients who were to undergo primary surgical treatment. Additionally, a group of 10 patients who were to receive neoadjuvant chemotherapy underwent two FNAs before chemotherapy (adriamycin 60 mg/m(2) and cyclophosphamide 600 mg/m(2)) followed by another FNA on day 21 after the first cycle. Total RNA was amplified with T7 Eberwine's procedure and labeled cDNA was hybridized onto a 7600-feature glass cDNA microarray. RESULTS: We identified candidate gene expression profiles that might distinguish tumors with complete response to chemotherapy from tumors that do not respond, and found that the number of genes that change after one cycle of chemotherapy was 10 times greater in the responding group than in the non-responding group. CONCLUSION: This study supports the suitability of FNA-derived cDNA microarray expression profiling of breast cancers as a comprehensive genomic approach for studying the mechanisms of drug resistance. Our findings also demonstrate the potential of monitoring post-chemotherapy changes in expression profiles as a measure of pharmacodynamic effect and suggests that these approaches might yield useful results when validated by larger studies

    High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium.

    Get PDF
    Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37-0.87) and study (kappa range = 0.39-0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p-value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000-4,500 cells: kappa = 0.78) than those with lower counts (50-500 cells: kappa = 0.41; p-value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre- and post-analytical quality control procedures are necessary in order to ensure satisfactory performance.ABCS was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009-4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. CNIO-BCS was supported by the Genome Spain Foundation, the Red Tematica de Investigacion Cooperativa en Cancer and grants from the Asociacion Espaola Contra el Cancer and the Fondo de Investigacion Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit (CNIO) is supported by the Instituto de Salud Carlos III. The ESTHER study was supported by a grant from the Baden Wurttemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I, 106332, 108253, 108419], the Hamburg Cancer Society, the German Cancer Research Center (DKFZ) and the Federal Ministry of Education and Research (BMBF) Germany [01KH0402]. The MCBCS was supported by an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], the Breast Cancer Research Foundation, the Mayo Clinic Breast Cancer Registry and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. ORIGO authors thank E. Krol-Warmerdam, and J. Blom; The contributing studies were funded by grants from the Dutch Cancer Society (UL1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SEARCH is funded by programme grant from Cancer Research UK [C490/A10124. C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. Part of this work was supported by the European Community’s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009223175) (COGS). The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR), London. ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. We acknowledge funds from Breakthrough Breast Cancer, UK, in support of MGC at the time this work was carried out and funds from the Cancer Research, UK, in support of MA.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cjp2.4

    LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency

    Get PDF
    Background: A poorly functioning tumor vasculature is pro-oncogenic and may impede the delivery of therapeutics. Normalizing the vasculature, therefore, may be beneficial. We previously reported that the secreted glycoprotein leucine-rich α-2-glycoprotein 1 (LRG1) contributes to pathogenic neovascularization. Here, we investigate whether LRG1 in tumors is vasculopathic and whether its inhibition has therapeutic utility. Methods: Tumor growth and vascular structure were analyzed in subcutaneous and genetically engineered mouse models in wild-type and Lrg1 knockout mice. The effects of LRG1 antibody blockade as monotherapy, or in combination with co-therapies, on vascular function, tumor growth, and infiltrated lymphocytes were investigated. Findings: In mouse models of cancer, Lrg1 expression was induced in tumor endothelial cells, consistent with an increase in protein expression in human cancers. The expression of LRG1 affected tumor progression as Lrg1 gene deletion, or treatment with a LRG1 function-blocking antibody, inhibited tumor growth and improved survival. Inhibition of LRG1 increased endothelial cell pericyte coverage and improved vascular function, resulting in enhanced efficacy of cisplatin chemotherapy, adoptive T cell therapy, and immune checkpoint inhibition (anti-PD1) therapy. With immunotherapy, LRG1 inhibition led to a significant shift in the tumor microenvironment from being predominantly immune silent to immune active. Conclusions: LRG1 drives vascular abnormalization, and its inhibition represents a novel and effective means of improving the efficacy of cancer therapeutics. Funding: Wellcome Trust (206413/B/17/Z), UKRI/MRC (G1000466, MR/N006410/1, MC/PC/14118, and MR/L008742/1), BHF (PG/16/50/32182), Health and Care Research Wales (CA05), CRUK (C42412/A24416 and A17196), ERC (ColonCan 311301 and AngioMature 787181), and DFG (CRC1366)

    The effect of the stromal component of breast tumours on prediction of clinical outcome using gene expression microarray analysis

    Get PDF
    INTRODUCTION: The aim of this study was to examine the effect of the cellular composition of biopsies on the error rates of multigene predictors of response of breast tumours to neoadjuvant adriamycin and cyclophosphamide (AC) chemotherapy. MATERIALS AND METHODS: Core biopsies were taken from primary breast tumours of 43 patients prior to AC, and subsequent clinical response was recorded. Post-chemotherapy (day 21) samples were available for 16 of these samples. Frozen sections of each core were used to estimate the proportion of invasive cancer and other tissue components at three levels. Transcriptional profiling was performed using a cDNA array containing 4,600 elements. RESULTS: Twenty-three (53%) patients demonstrated a 'good' and 20 (47%) a 'poor' clinical response. The percentage invasive tumour in core biopsies collected from these patients varied markedly. Despite this, agglomerative clustering of sample expression profiles showed that almost all biopsies from the same tumour aggregated as nearest neighbours. SAM (significance analysis of microarrays) regression analysis identified 144 genes which distinguished high- and low-percentage invasive tumour biopsies at a false discovery rate of not more than 5%. The misclassification error of prediction of clinical response using microarray data from pre-treatment biopsies (on leave-one-out cross-validation) was 28%. When prediction was performed on subsets of samples which were more homogeneous in their proportions of malignant and stromal cells, the misclassification error was considerably lower (8%–13%, p < 0.05 on permutation). CONCLUSION: The non-tumour content of breast cancer samples has a significant effect on gene expression profiles. Consideration of this factor improves accuracy of response prediction by expression array profiling. Future gene expression array prediction studies should be planned taking this into account

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups.

    Get PDF
    BACKGROUND: The value of KI67 in breast cancer prognostication has been questioned due to concerns on the analytical validity of visual KI67 assessment and methodological limitations of published studies. Here, we investigate the prognostic value of automated KI67 scoring in a large, multicentre study, and compare this with pathologists' visual scores available in a subset of patients. METHODS: We utilised 143 tissue microarrays containing 15,313 tumour tissue cores from 8088 breast cancer patients in 10 collaborating studies. A total of 1401 deaths occurred during a median follow-up of 7.5 years. Centralised KI67 assessment was performed using an automated scoring protocol. The relationship of KI67 levels with 10-year breast cancer specific survival (BCSS) was investigated using Kaplan-Meier survival curves and Cox proportional hazard regression models adjusted for known prognostic factors. RESULTS: Patients in the highest quartile of KI67 (>12 % positive KI67 cells) had a worse 10-year BCSS than patients in the lower three quartiles. This association was statistically significant for ER-positive patients (hazard ratio (HR) (95 % CI) at baseline = 1.96 (1.31-2.93); P = 0.001) but not for ER-negative patients (1.23 (0.86-1.77); P = 0.248) (P-heterogeneity = 0.064). In spite of differences in characteristics of the study populations, the estimates of HR were consistent across all studies (P-heterogeneity = 0.941 for ER-positive and P-heterogeneity = 0.866 for ER-negative). Among ER-positive cancers, KI67 was associated with worse prognosis in both node-negative (2.47 (1.16-5.27)) and node-positive (1.74 (1.05-2.86)) tumours (P-heterogeneity = 0.671). Further classification according to ER, PR and HER2 showed statistically significant associations with prognosis among hormone receptor-positive patients regardless of HER2 status (P-heterogeneity = 0.270) and among triple-negative patients (1.70 (1.02-2.84)). Model fit parameters were similar for visual and automated measures of KI67 in a subset of 2440 patients with information from both sources. CONCLUSIONS: Findings from this large-scale multicentre analysis with centrally generated automated KI67 scores show strong evidence in support of a prognostic value for automated KI67 scoring in breast cancer. Given the advantages of automated scoring in terms of its potential for standardisation, reproducibility and throughput, automated methods appear to be promising alternatives to visual scoring for KI67 assessment
    corecore