69 research outputs found
Understanding the in vivo Uptake Kinetics of a Phosphatidylethanolamine-binding Agent \u3csup\u3e99m\u3c/sup\u3eTc-Duramycin
Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague–Dawley rats. Target binding and biodistribution of 99mTc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent
Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins
Objective—We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Approach and Results—Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter–binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Conclusions—Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction
Characterization of Novel StAR (Steroidogenic Acute Regulatory Protein) Mutations Causing Non-Classic Lipoid Adrenal Hyperplasia
Context
Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH).
Objective
StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported.
Design
To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature.
Setting
Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain.
Patients
Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age.
Results
StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol.
Conclusions
StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed
Characterization of Novel StAR (Steroidogenic Acute Regulatory Protein) Mutations Causing Non-Classic Lipoid Adrenal Hyperplasia
Context
Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH).
Objective
StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported.
Design
To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature.
Setting
Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain.
Patients
Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age.
Results
StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol.
Conclusions
StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed
Latitudinal clines of the human vitamin D receptor and skin color genes
The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes\u27 functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes
A recurrent germline mutation in the 5’UTR of the androgen receptor causes complete androgen insensitivity by activating aberrant uORF translation
A subset of patients with monogenic disorders lacks disease causing mutations in the protein coding region of the corresponding gene. Here we describe a recurrent germline mutation found in two unrelated patients with complete androgen insensitivity syndrome (CAIS) generating an upstream open reading frame (uORF) in the 5' untranslated region (5'-UTR) of the androgen receptor (AR) gene. We show in patient derived primary genital skin fibroblasts as well as in cell-based reporter assays that this mutation severely impacts AR function by reducing AR protein levels without affecting AR mRNA levels. Importantly, the newly generated uORF translates into a polypeptide and the expression level of this polypeptide inversely correlates with protein translation from the primary ORF of the AR thereby providing a model for AR-5'UTR mediated translational repression. Our findings not only add a hitherto unrecognized genetic cause to complete androgen insensitivity but also underline the importance of 5'UTR mutations affecting uORFs for the pathogenesis of monogenic disorders in general
Novel associations in disorders of sex development: findings from the I-DSD registry
Context:
The focus of care in disorders of sex development (DSD) is often directed to issues related to sex and gender development. In addition, the molecular etiology remains unclear in the majority of cases.<p></p>
Objective:
To report the range of associated conditions identified in the international DSD (I-DSD) Registry.<p></p>
Design, Setting, and Patients:
Anonymized data were extracted from the I-DSD Registry for diagnosis, karyotype, sex of rearing, genetic investigations, and associated anomalies. If necessary, clarification was sought from the reporting clinician.<p></p>
Results:
Of 649 accessible cases, associated conditions occurred in 168 (26%); 103 (61%) cases had one condition, 31 (18%) had two conditions, 20 (12%) had three conditions, and 14 (8%) had four or more conditions. Karyotypes with most frequently reported associations included 45,X with 6 of 8 affected cases (75%), 45,X/46,XY with 19 of 42 cases (45%), 46,XY with 112 of 460 cases (24%), and 46,XX with 27 of 121 cases (22%). In the 112 cases of 46,XY DSD, the commonest conditions included small for gestational age in 26 (23%), cardiac anomalies in 22 (20%), and central nervous system disorders in 22 (20%), whereas in the 27 cases of 46,XX DSD, skeletal and renal anomalies were commonest at 12 (44%) and 8 (30%), respectively. Of 170 cases of suspected androgen insensitivity syndrome, 19 (11%) had reported anomalies and 9 of these had confirmed androgen receptor mutations.<p></p>
Conclusions:
Over a quarter of the cases in the I-DSD Registry have an additional condition. These associations can direct investigators toward novel genetic etiology and also highlight the need for more holistic care of the affected person.<p></p>
A Genome-Wide Pharmacogenetic Study of Growth Hormone Responsiveness
Individual patients vary in their response to growth hormone (GH). No large-scale genome-wide studies have looked for genetic predictors of GH responsiveness. To identify genetic variants associated with GH responsiveness. Genome-wide association study (GWAS). Cohorts from multiple academic centers and a clinical trial. A total of 614 individuals from 5 short stature cohorts receiving GH: 297 with idiopathic short stature, 276 with isolated GH deficiency, and 65 born small for gestational age. Association of more than 2 million variants was tested. Primary analysis: individual single nucleotide polymorphism (SNP) association with first-year change in height standard deviation scores. Secondary analyses: SNP associations in clinical subgroups adjusted for clinical variables; association of polygenic score calculated from 697 genome-wide significant height SNPs with GH responsiveness. No common variant associations reached genome-wide significance in the primary analysis. The strongest suggestive signals were found near the B4GALT4 and TBCE genes. After meta-analysis including replication data, signals at several loci reached or retained genome-wide significance in secondary analyses, including variants near ST3GAL6. There was no significant association with variants previously reported to be associated with GH response nor with a polygenic predicted height score. We performed the largest GWAS of GH responsiveness to date. We identified 2 loci with a suggestive effect on GH responsiveness in our primary analysis and several genome-wide significant associations in secondary analyses that require further replication. Our results are consistent with a polygenic component to GH responsiveness, likely distinct from the genetic regulators of adult height
Involving individuals with disorders of sex development and their parents in exploring new models of shared learning: Proceedings from a DSDnet COST Action workshop
The level of connection between health care professionals and people who experience a condition that affects sex development is variable. These people and associated support groups need to be included in discussions about research and healthcare delivery. The aim of this study was to understand the experiences of individuals with disorders of sexual development (DSD), their parents, health care providers, and support groups. Workshop planning, preparation, delivery, and evaluation involved members of working groups from the COST Action DSDnet. A coordinator, in collaboration with a support group representative, led the workshop design and delivery. Our successful, facilitated workshop involved 33 attendees from 8 EU countries. The workshop provided individuals with DSD, parents, advisory groups, and professionals with an opportunity for shared learning. Outputs focused on 7 key areas, including diagnosis, childhood, and transition to adult care as well as fostering discussion around registries, future research topics, consent processes, and information needs across the life course. The importance of trustworthy and knowledgeable providers, time to understand such rare conditions, and the place support groups have in a life course approach were valuable learning points for all attendees. In conclusion, workshops can be designed and delivered in meaningful ways for all those involved in care of individuals with rare conditions
- …