6 research outputs found

    Altered high-energy phosphate and membrane metabolism in Pelizaeus-Merzbacher disease using phosphorus magnetic resonance spectroscopy

    Get PDF
    Pelizaeus-Merzbacher disease is an X-linked recessive leucodystrophy of the central nervous system caused by mutations affecting the major myelin protein, proteolipid protein 1. The extent of the altered in vivo neurochemistry of protein, proteolipid protein 1 duplications, the most common form of Pelizaeus-Merzbacher disease, is, however, poorly understood. Phosphorus magnetic resonance spectroscopy is the only in vivo technique that can assess the biochemistry associated with high-energy phosphate and membrane phospholipid metabolism across different cortical, subcortical and white matter areas. In this cross-sectional study, whole-brain, multi-voxel phosphorus magnetic resonance spectroscopy was acquired at 3 T on 14 patients with Pelizaeus-Merzbacher disease with protein, proteolipid protein 1 duplications and 23 healthy controls (all males). Anabolic and catabolic levels of membrane phospholipids (phosphocholine and phosphoethanolamine, and glycerophosphoethanolamine and glycerophosphocholine, respectively), as well as phosphocreatine, inorganic orthophosphate and adenosine triphosphate levels relative to the total phosphorus magnetic resonance spectroscopy signal from 12 different cortical and subcortical areas were compared between the two groups. Independent of brain area, phosphocholine, glycerophosphoethanolamine and inorganic orthophosphate levels were significantly lower (P = 0.0025, P \u3c 0.0001 and P = 0.0002) and phosphocreatine levels were significantly higher (P \u3c 0.0001) in Pelizaeus-Merzbacher disease patients compared with controls. Additionally, there was a significant group-by-brain area interaction for phosphocreatine with post-hoc analyses demonstrating significantly higher phosphocreatine levels in patients with Pelizaeus-Merzbacher disease compared with controls across multiple brain areas (anterior and posterior white matter, superior parietal lobe, posterior cingulate cortex, hippocampus, occipital cortex, striatum and thalamus; all P ≤ 0.0042). Phosphoethanolamine, glycerophosphoethanolamine and adenosine triphosphate levels were not significantly different between groups. For the first-time, widespread alterations in phosphorus magnetic resonance spectroscopy metabolite levels of Pelizaeus-Merzbacher disease patients are being reported. Specifically, increased high-energy phosphate storage levels of phosphocreatine concomitant with decreased inorganic orthophosphate across multiple areas suggest a widespread reduction in the high-energy phosphate utilization in Pelizaeus-Merzbacher disease, and the membrane phospholipid metabolite deficits suggest a widespread degradation in the neuropil content/maintenance of patients with Pelizaeus-Merzbacher disease which includes axons, dendrites and astrocytes within cortex and the myelin microstructure and oligodendrocytes within white matter. These results provide greater insight into the neuropathology of Pelizaeus-Merzbacher disease both in terms of energy expenditure and membrane phospholipid metabolites. Future longitudinal studies are warranted to investigate the utility of phosphorus magnetic resonance spectroscopy as surrogate biomarkers in monitoring treatment intervention for Pelizaeus-Merzbacher disease

    The natural history of Pelizaeus–Merzbacher disease caused by PLP1 duplication: A multiyear case series

    No full text
    Key Clinical Message This study aimed to characterize the clinical features, developmental milestones, and the natural history of Pelizaeus–Merzbacher disease (PMD) associated with PLP1 gene duplications. The study examined 16 PMD Patients ranging in age from 7 to 48 years, who had a documented PLP1 gene duplication. The study examined and analyzed the medical and developmental histories of the subjects utilizing a combination of resources that included medical history questionnaires, medical record reviews, and a 31‐point functional disability scale that had been previously validated. The data extracted from the medical records and questionnaires for analysis included information related to medical and developmental histories, level of ambulation and cognition, and degree of functional disability. The summation of findings among the study population demonstrated that the presenting symptoms, developmental milestones achieved, and progression of symptoms reported are consistent with many previous studies of patients with PLP1 duplications. All patients exhibited onset within the first year of life, with nystagmus predominating as the first symptom noticed. All patients exhibited delays in both motor and language development; however, many individuals were able to meet several developmental milestones. They exhibited some degree of continued motor impairment with none having the ability to walk independently. All patients were able to complete at least some of the cognition achievements and although not all were verbal, a number were able to use communication devices to complete these tasks. A critical tool of the study was the functional disability scale which provided a major advantage in helping quantify the clinical course of PMD, and for several, we were able to gather this information at more than one point in time. These reported findings in our cohort contribute important insight into the clinical heterogeneity and potential underlying mechanisms that define the molecular pathogenesis of the disease. This is one of only a small number of natural history studies examining the clinical course of a cohort of patients with PLP1 duplications within the context of a validated functional disability scoring system. This study is unique in that it is limited to subjects with PLP1 gene duplications. This study demonstrated many commonalities to other studies that have characterized the features of PMD and other PLP1‐related disorders but also provide significant new insights into the evolving story that marks the natural history

    Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes

    No full text
    Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD—including point mutations and duplication, triplication, and deletion of PLP1—and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder
    corecore